Abstract The dialkyl malonate derived 1,3‐diphosphines R2C(CH2PPh2)2(R=a, Me;b, Et;c,n‐Bu;d,n‐Dec;e, Bn;f,p‐tolCH2) are combined with (p‐tol3P)2PtCl2ortrans‐(p‐tol3P)2Pt((C≡C)2H)2to give the chelatescis‐(R2C(CH2PPh2)2)PtCl2(2 a–f, 94–69 %) orcis‐(R2C(CH2PPh2)2)Pt((C≡C)2H)2(3 a–f, 97–54 %). Complexes3 a–dare also available from2 a–dand excess 1,3‐butadiyne in the presence of CuI (cat.) and excess HNEt2(87–65 %). Under similar conditions,2and3react to give the title compounds [(R2C(CH2PPh2)2)[Pt(C≡C)2]4(4 a–f; 89–14 % (64 % avg)), from which ammonium salts such as the co‐product [H2NEt2]+Cl−are challenging to remove. Crystal structures of4 a,bshow skew rhombus as opposed to square Pt4geometries. The NMR and IR properties of4 a–fare similar to those of mono‐ or diplatinum model compounds. However, cyclic voltammetry gives only irreversible oxidations. As compared to mono‐platinum or Pt(C≡C)2Pt species, the UV‐visible spectra show much more intense and red‐shifted bands. Time dependent DFT calculations define the transitions and principal orbitals involved. Electrostatic potential surface maps reveal strongly negative Pt4C16cores that likely facilitate ammonium cation binding. Analogous electronic properties of Pt3C12and Pt5C20homologs and selected equilibria are explored computationally. 
                        more » 
                        « less   
                    
                            
                            A new supramolecular bonding motif involving NH bonds of ammonium salts and macrocycles derived from platinum corners and butadiynediyl linkers
                        
                    
    
            CuI catalyzes reactions of cis -(R 2 C(CH 2 PPh 2 ) 2 )Pt(CCCCH) 2 and cis -(R 2 C(CH 2 PPh 2 ) 2 )PtI 2 in secondary amine solvents HNR’ 2 to give the title adducts [(R 2 C(CH 2 PPh 2 ) 2 )Pt(CCCC)] 4 ·(H 2 NR’ 2 + I − ) n (R/R’/ n = Me/Et/1, Me/((CH 2 CH 2 ) 2 O) 0.5 /3, Et/Et/1, Et/CH 2 CHCH 2 /1; 92–42%). Crystal structures of these or closely related species establish folded Pt 4 cores containing ammonium cation guests, with NH/ and NCH/CC hydrogen bonding. DOSY NMR experiments show that the host/guest relationship can be maintained in solution. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1900549
- PAR ID:
- 10424779
- Date Published:
- Journal Name:
- Dalton Transactions
- Volume:
- 51
- Issue:
- 44
- ISSN:
- 1477-9226
- Page Range / eLocation ID:
- 16795 to 16799
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The overarching goal of this study is to effect the elimination of platinum from adducts withcis–C≡C−Pt−C≡C‐ linkages, thereby generating novel conjugated polyynes. Thus, the bis(hexatriynyl) complextrans‐(p‐tol3P)2Pt((C≡C)3H)2is treated with 1,3‐diphosphines R2C(CH2PPh2)2to generate (R2C(CH2PPh2)2)2Pt((C≡C)3H)2(14; R=c,n‐Bu;e,p‐tolCH2). These condense with the diiodide complexes R2C(CH2PPh2)2PtI2(9 a,c) in the presence of CuI (cat.) and excess HNEt2to give the title macrocycles [(R2C(CH2PPh2)2)Pt(C≡C)3]4(16 c,e) as adducts of the byproduct [H2NEt2]+I−(30–66 %). DOSY NMR experiments establish that this association is maintained in solution, but NaOAc removes the ammonium salt. The bis(triethylsilylpolyynyl) complexes (n‐Bu2C(CH2PPh2)2)Pt((C≡C)nSiEt3)2(n=2, 3) are synthesized analogously to14 c. They react with I2at rt to give mainly the diiodide complex9 cand the coupling product Et3Si(C≡CC≡C)nSiEt3. The possibility of competing reactions giving IC≡C species is investigated. Analogous reactions of the Pt4C24macrocycle16 calso give9 c, but no sp13C NMR signals or mass spectrometric Cxz+ions (x=24–100) could be detected. It is proposed that some cyclo[24]carbon is generated, but then rapidly converts to other forms of elemental carbon. No cyclotetracosane (C24H48) is detected when this sequence is carried out in the presence of PtO2and H2.more » « less
- 
            The gyroscope like dichloride complexes trans -Pt(Cl) 2 (P((CH 2 ) n ) 3 P) ( trans -2; n = c, 14; e, 18; g, 22) and MeLi (2 equiv.) react to yield the parachute like dimethyl complexes cis -Pt(Me) 2 (P((CH 2 ) n ) 3 P) ( cis -4c,e,g, 70–91%). HCl (1 equiv.) and cis -4c react to give cis -Pt(Cl)(Me)(P((CH 2 ) 14 ) 3 P) ( cis -5c, 83%), which upon stirring with silica gel or crystallization affords trans -5c (89%). Similar reactions of HCl and cis -4e,g give cis / trans -5e,g mixtures that upon stirring with silica gel yield trans -5e,g. A parallel sequence with trans -2c/EtLi gives cis -Pt(Et) 2 (P((CH 2 ) 14 ) 3 P) ( cis -6c, 85%) but subsequent reaction with HCl affords trans -Pt(Cl)(Et)(P((CH 2 ) 14 ) 3 P) ( trans -7c, 45%) directly. When previously reported cis -Pt(Ph) 2 (P((CH 2 ) 14 ) 3 P) is treated with HCl (1 equiv.), cis - and trans -Pt(Cl)(Ph)(P((CH 2 ) 14 ) 3 P) are isolated (44%, 29%), with the former converting to the latter at 100 °C. Reactions of trans -5c and LiBr or NaI afford the halide complexes trans -Pt(X)(Me)(P((CH 2 ) 14 ) 3 P) ( trans -9c, 88%; trans -10c, 87%). Thermolyses and DFT calculations that include acyclic model compounds establish trans > cis stabilities for all except the dialkyl complexes, for which energies can be closely spaced. The σ donor strengths of the non-phosphine ligands are assigned key roles in the trends. The crystal structures of cis -4c, trans -5c, trans -7c, and trans -10c are determined and analyzed together with the computed structures.more » « less
- 
            Reactions of {(C 6 F 5 )Pt[S(CH 2 CH 2 -) 2 ](μ-Cl)} 2 and R 3 P yield the bis(phosphine) species trans -(C 6 F 5 )(R 3 P) 2 PtCl [R = Et ( Pt'Cl ), Ph, ( p -CF 3 C 6 H 4 ) 3 P; 88-81 %]. Additions of Pt'Cl and H(C≡C) n H ( n = 1, 2; HNEt 2 , 20 mol % CuI) give Pt'C 2 H (37 %, plus Pt'I , 16 %) and Pt'C 4 H (88 %). Homocoupling of Pt'C 4 H under Hay conditions (O 2 , CuCl, TMEDA, acetone) gives Pt'C 8 Pt' (85 %), but Pt'C 2 H affords only traces of Pt'C 4 Pt' . However, condensation of Pt'C 4 H and Pt'Cl (HNEt 2 , 20 mol % CuI) yields Pt'C 4 Pt' (97 %). Hay heterocouplings of Pt'C 4 H or trans -( p -tol)(Ph 3 P) 2 Pt(C≡C) 2 H ( Pt*C 4 H ) and excess HC≡CSiEt 3 give Pt'C 6 SiEt 3 (76 %) or Pt*C 6 SiEt 3 (89 %). The latter and wet n -Bu 4 N + F - react to yield labile Pt*C 6 H (60 %). Hay homocouplings of Pt*C 4 H and Pt*C 6 H give Pt*C 8 Pt* (64 %) and Pt*C 12 Pt* (64 %). Reaction of trans -(C 6 F 5 )( p -tol 3 P) 2 PtCl ( PtCl ) and HC≡CH (HNEt 2 , 20 mol % CuI) yields only traces of PtC 2 H . However, an analogous reaction with HC≡CSiMe 3 gives PtC 2 SiMe 3 (75 %), which upon treatment with silica yields PtC 2 H (77 %). An analogous coupling of trans -(C 6 F 5 )(Ph 3 P) 2 PtCl with H(C≡C) 2 H gives trans -(C 6 F 5 )(Ph 3 P) 2 Pt(C≡C) 2 H (34 %). Advantages and disadvantages of the various trans -(Ar)(R 3 P) 2 Pt end-groups are analyzed.more » « less
- 
            Reaction of ( p -tol 3 P) 2 PtCl 2 and Me 3 Sn(CC) 2 SiMe 3 (1 : 1/THF/reflux) gives monosubstituted trans -Cl( p -tol 3 P) 2 Pt(CC) 2 SiMe 3 (63%), which with wet n -Bu 4 N + F − yields trans -Cl( p -tol 3 P) 2 Pt(CC) 2 H ( 2 , 96%). Hay oxidative homocoupling (O 2 /CuCl/TMEDA) gives all- trans -Cl( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 Cl ( 3 , 68%). Reaction of 3 and Me 3 Sn(CC) 2 SiMe 3 (1 : 1/rt) affords monosubstituted all- trans -Cl( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 (46%), which is converted by a similar desilylation/homocoupling sequence to all- trans -Cl[( p -tol 3 P) 2 Pt(CC) 4 ] 3 Pt(P p -tol 3 ) 2 Cl ( 7 ; 79%). Reaction of ( p -tol 3 P) 2 PtCl 2 and excess H(CC) 2 SiMe 3 (HNEt 2 /cat. CuI) gives trans -Me 3 Si(CC) 2 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 (78%), which with wet n -Bu 4 N + F − affords trans -H(CC) 2 Pt(P p -tol 3 ) 2 (CC) 2 H (96%). Hay oxidative cross coupling with 2 (1 : 4) gives all- trans -Cl[( p -tol 3 P) 2 Pt(CC) 4 ] 2 Pt(P p -tol 3 ) 2 Cl ( 10 , 36%) along with homocoupling product 3 (33%). Reaction of 3 and Me 3 Sn(CC) 2 SiMe 3 (1 : 2/rt) yields all- trans -Me 3 Si(CC) 2 ( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 ( 17 , 77%), which with wet n -Bu 4 N + F − gives all- trans -H(CC) 2 ( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 H (96%). Reaction of 3 and excess Me 3 P gives all- trans -Cl(Me 3 P) 2 Pt(CC) 4 Pt(PMe 3 ) 2 Cl ( 4 , 86%). A model reaction of trans -( p -tol)( p -tol 3 P) 2 PtCl and KSAc yields trans -( p -tol)( p -tol 3 P) 2 PtSAc ( 12 , 75%). Similar reactions of 3 , 7 , 10 , and 4 give all- trans -AcS[(R 3 P) 2 Pt(CC) 4 ] n Pt(PR 3 ) 2 SAc (76–91%). The crystal structures of 3 , 17 , and 12 are determined. The first exhibits a chlorine–chlorine distance of 17.42 Å; those in 10 and 7 are estimated as 30.3 Å and 43.1 Å.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    