skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1900654

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Adblocking relies on filter lists, which are manually curated and maintained by a community of filter list authors. Filter list curation is a laborious process that does not scale well to a large number of sites or over time. In this article, we introduce AutoFR, a reinforcement learning framework to fully automate the process of filter rule creation and evaluation for sites of interest. We design an algorithm based on multi-arm bandits to generate filter rules that block ads while controlling the trade-off between blocking ads and avoiding visual breakage. We test AutoFR on thousands of sites and show that it is efficient: It takes only a few minutes to generate filter rules for a site of interest. AutoFR is effective: It optimizes filter rules for a particular site that can block 86% of the ads, as compared to 87% by EasyList, while achieving comparable visual breakage. Using AutoFR as a building block, we devise three methodologies that generate filter rules across sites based on: (1) a modified version of AutoFR, (2) rule popularity, and (3) site similarity. We conduct an in-depth comparative analysis of these approaches by considering their effectiveness, efficiency, and maintainability. We demonstrate that some of them can generalize well to new sites in both controlled and live settings. We envision that AutoFR can assist the adblocking community in automatically generating and updating filter rules at scale. 
    more » « less
    Free, publicly-accessible full text available February 28, 2026
  2. Virtual reality (VR) platforms enable a wide range of applications, however, pose unique privacy risks. In particular, VR devices are equipped with a rich set of sensors that collect personal and sensitive information (e.g., body motion, eye gaze, hand joints, and facial expression). The data from these newly available sensors can be used to uniquely identify a user, even in the absence of explicit identifiers. In this paper, we seek to understand the extent to which a user can be identified based solely on VR sensor data, within and across real-world apps from diverse genres. We consider adversaries with capabilities that range from observing APIs available within a single app (app adversary) to observing all or selected sensor measurements across multiple apps on the VR device (device adversary). To that end, we introduce BehaVR, a framework for collecting and analyzing data from all sensor groups collected by multiple apps running on a VR device. We use BehaVR to collect data from real users that interact with 20 popular real-world apps. We use that data to build machine learning models for user identification within and across apps, with features extracted from available sensor data. We show that these models can identify users with an accuracy of up to 100%, and we reveal the most important features and sensor groups, depending on the functionality of the app and the adversary. To the best of our knowledge, BehaVR is the first to analyze user identification in VR comprehensively, i.e., considering all sensor measurements available on consumer VR devices, collected by multiple real-world, as opposed to custom-made, apps. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Web forms are one of the primary ways to collect personal information online, yet they are relatively under-studied. Unlike web tracking, data collection through web forms is explicit and contextualized. Users (i) are asked to input specific personal information types, and (ii) know the specific context (i.e., on which website and for what purpose). For web forms to be trusted by users, they must meet the common sense standards of appropriate data collection practices within a particular context (i.e., privacy norms). In this paper, we extract the privacy norms embedded within web forms through a measurement study. First, we build a specialized crawler to discover web forms on websites. We run it on 11,500 popular websites, and we create a dataset of 293K web forms. Second, to process data of this scale, we develop a cost-efficient way to annotate web forms with form types and personal information types, using text classifiers trained with assistance of large language models (LLMs). Third, by analyzing the annotated dataset, we reveal common patterns of data collection practices. We find that (i) these patterns are explained by functional necessities and legal obligations, thus reflecting privacy norms, and that (ii) deviations from the observed norms often signal unnecessary data collection. In addition, we analyze the privacy policies that accompany web forms. We show that, despite their wide adoption and use, there is a disconnect between privacy policy disclosures and the observed privacy norms. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. Children’s and adolescents’ online data privacy are regulated by laws such as the Children’s Online Privacy Protection Act (COPPA) and the California Consumer Privacy Act (CCPA). Online services that are directed towards general audiences (i.e., including children, adolescents, and adults) must comply with these laws. In this paper, first, we present DiffAudit, a platform-agnostic privacy auditing methodology for general audience services. DiffAudit performs differential analysis of network traffic data flows to compare data processing practices (i) between child, adolescent, and adult users and (ii) before and after consent is given and user age is disclosed. We also present a data type classification method that utilizes GPT-4 and our data type ontology based on COPPA and CCPA, allowing us to identify considerably more data types than prior work. Second, we apply DiffAudit to a set of popular general audience mobile and web services and observe a rich set of behaviors extracted from over 440K outgoing requests, containing 3,968 unique data types we extracted and classified. We reveal problematic data processing practices prior to consent and age disclosure, lack of differentiation between age-specific data flows, inconsistent privacy policy disclosures, and sharing of linkable data with third parties, including advertising and tracking services. 
    more » « less
    Free, publicly-accessible full text available November 4, 2025
  5. Model pruning has been proposed as a technique for reducing the size and complexity of Federated learning (FL) models. By making local models coarser, pruning is intuitively expected to improve protection against privacy attacks. However, the level of this expected privacy protection has not been previously characterized, or optimized jointly with utility. In this paper, we first characterize the privacy offered by pruning. We establish information-theoretic upper bounds on the information leakage from pruned FL and we experimentally validate them under state-of-the-art privacy attacks across different FL pruning schemes. Second, we introducePriPrune– a privacy-aware algorithm for pruning in FL.PriPruneuses defense pruning masks, which can be applied locally afteranypruning algorithm, and adapts the defense pruning rate to jointly optimize privacy and accuracy. Another key idea in the design ofPriPruneisPseudo-Pruning: it undergoes defense pruning within the local model and only sends the pruned model to the server; while the weights pruned out by defense mask are withheld locally for future local training rather than being removed. We show thatPriPrunesignificantly improves the privacy-accuracy tradeoff compared to state-of-the-art pruned FL schemes. For example, on the FEMNIST dataset,PriPruneimproves the privacy ofPruneFLby 45.5% without reducing accuracy. 
    more » « less
    Free, publicly-accessible full text available November 2, 2025
  6. We consider the problem of predicting cellular network performance (signal maps) from measurements collected by several mobile devices. We formulate the problem within the online federated learning framework: (i) federated learning (FL) enables users to collaboratively train a model, while keeping their training data on their devices; (ii) measurements are collected as users move around over time and are used for local training in an online fashion. We consider an honest-but-curious server, who observes the updates from target users participating in FL and infers their location using a deep leakage from gradients (DLG) type of attack, originally developed to reconstruct training data of DNN image classifiers. We make the key observation that a DLG attack, applied to our setting, infers the average location of a batch of local data, and can thus be used to reconstruct the target users' trajectory at a coarse granularity. We build on this observation to protect location privacy, in our setting, by revisiting and designing mechanisms within the federated learning framework including: tuning the FL parameters for averaging, curating local batches so as to mislead the DLG attacker, and aggregating across multiple users with different trajectories. We evaluate the performance of our algorithms through both analysis and simulation based on real-world mobile datasets, and we show that they achieve a good privacy-utility tradeoff. 
    more » « less
  7. We consider the problem of population density estimation based on location data crowdsourced from mobile devices, using kernel density estimation (KDE). In a conventional, centralized setting, KDE requires mobile users to upload their location data to a server, thus raising privacy concerns. Here, we propose a Federated KDE framework for estimating the user population density, which not only keeps location data on the devices but also provides probabilistic privacy guarantees against a malicious server that tries to infer users' location. Our approach Federated random Fourier feature (RFF) KDE leverages a random feature representation of the KDE solution, in which each user's information is irreversibly projected onto a small number of spatially delocalized basis functions, making precise localization impossible while still allowing population density estimation. We evaluate our method on both synthetic and real-world datasets, and we show that it achieves a better utility (estimation performance)-vs-privacy (distance between inferred and true locations) tradeoff, compared to state-of-the-art baselines (e.g., GeoInd). We also vary the number of basis functions per user, to further improve the privacy-utility trade-off, and we provide analytical bounds on localization as a function of areal unit size and kernel bandwidth. 
    more » « less
  8. Signal maps are essential for the planning and operation of cellular networks. However, the measurements needed to create such maps are expensive, often biased, not always reflecting the performance metrics of interest, and posing privacy risks. In this paper, we develop a unified framework for predicting cellular performance maps from limited available measurements. Our framework builds on a state-of-the-art random-forest predictor, or any other base predictor. We propose and combine three mechanisms that deal with the fact that not all measurements are equally important for a particular prediction task. First, we design quality-of-service functions (Q), including signal strength (RSRP) but also other metrics of interest to operators, such as number of bars, coverage (improving recall by 76%-92%) and call drop probability (reducing error by as much as 32%). By implicitly altering the loss function employed in learning, quality functions can also improve prediction for RSRP itself where it matters (e.g., MSE reduction up to 27% in the low signal strength regime, where high accuracy is critical). Second, we introduce weight functions (W) to specify the relative importance of prediction at different locations and other parts of the feature space. We propose re-weighting based on importance sampling to obtain unbiased estimators when the sampling and target distributions are different. This yields improvements up to 20% for targets based on spatially uniform loss or losses based on user population density. Third, we apply the Data Shapley framework for the first time in this context: to assign values (ϕ) to individual measurement points, which capture the importance of their contribution to the prediction task. This can improve prediction (e.g., from 64% to 94% in recall for coverage loss) by removing points with negative values and storing only the remaining data points (i.e., as low as 30%), which also has the side-benefit of helping privacy. We evaluate our methods and demonstrate significant improvement in prediction performance, using several real-world datasets. 
    more » « less
  9. null (Ed.)
  10. mart home devices are vulnerable to passive inference attacks based on network traffic, even in the presence of encryption. In this paper, we present PINGPONG, a tool that can automatically extract packet-level signatures for device events (e.g., light bulb turning ON/OFF) from network traffic. We evaluated PINGPONG on popular smart home devices ranging from smart plugs and thermostats to cameras, voice-activated devices, and smart TVs. We were able to: (1) automatically extract previously unknown signatures that consist of simple sequences of packet lengths and directions; (2) use those signatures to detect the devices or specific events with an average recall of more than 97%; (3) show that the signatures are unique among hundreds of millions of packets of real world network traffic; (4) show that our methodology is also applicable to publicly available datasets; and (5) demonstrate its robustness in different settings: events triggered by local and remote smartphones, as well as by home automation systems. 
    more » « less