skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 2, 2025

Title: PriPrune: Quantifying and Preserving Privacy in Pruned Federated Learning
Model pruning has been proposed as a technique for reducing the size and complexity of Federated learning (FL) models. By making local models coarser, pruning is intuitively expected to improve protection against privacy attacks. However, the level of this expected privacy protection has not been previously characterized, or optimized jointly with utility. In this paper, we first characterize the privacy offered by pruning. We establish information-theoretic upper bounds on the information leakage from pruned FL and we experimentally validate them under state-of-the-art privacy attacks across different FL pruning schemes. Second, we introducePriPrune– a privacy-aware algorithm for pruning in FL.PriPruneuses defense pruning masks, which can be applied locally afteranypruning algorithm, and adapts the defense pruning rate to jointly optimize privacy and accuracy. Another key idea in the design ofPriPruneisPseudo-Pruning: it undergoes defense pruning within the local model and only sends the pruned model to the server; while the weights pruned out by defense mask are withheld locally for future local training rather than being removed. We show thatPriPrunesignificantly improves the privacy-accuracy tradeoff compared to state-of-the-art pruned FL schemes. For example, on the FEMNIST dataset,PriPruneimproves the privacy ofPruneFLby 45.5% without reducing accuracy.  more » « less
Award ID(s):
1900654 1956393
PAR ID:
10585580
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM Digital Library
Date Published:
Journal Name:
ACM Transactions on Modeling and Performance Evaluation of Computing Systems
ISSN:
2376-3639
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Motivated by the ever-increasing concerns on personal data privacy and the rapidly growing data volume at local clients, federated learning (FL) has emerged as a new machine learning setting. An FL system is comprised of a central parameter server and multiple local clients. It keeps data at local clients and learns a centralized model by sharing the model parameters learned locally. No local data needs to be shared, and privacy can be well protected. Nevertheless, since it is the model instead of the raw data that is shared, the system can be exposed to the poisoning model attacks launched by malicious clients. Furthermore, it is challenging to identify malicious clients since no local client data is available on the server. Besides, membership inference attacks can still be performed by using the uploaded model to estimate the client's local data, leading to privacy disclosure. In this work, we first propose a model update based federated averaging algorithm to defend against Byzantine attacks such as additive noise attacks and sign-flipping attacks. The individual client model initialization method is presented to provide further privacy protections from the membership inference attacks by hiding the individual local machine learning model. When combining these two schemes, privacy and security can be both effectively enhanced. The proposed schemes are proved to converge experimentally under non-lID data distribution when there are no attacks. Under Byzantine attacks, the proposed schemes perform much better than the classical model based FedAvg algorithm. 
    more » « less
  2. null (Ed.)
    Federated learning (FL) is an emerging machine learning paradigm. With FL, distributed data owners aggregate their model updates to train a shared deep neural network collaboratively, while keeping the training data locally. However, FL has little control over the local data and the training process. Therefore, it is susceptible to poisoning attacks, in which malicious or compromised clients use malicious training data or local updates as the attack vector to poison the trained global model. Moreover, the performance of existing detection and defense mechanisms drops significantly in a scaled-up FL system with non-iid data distributions. In this paper, we propose a defense scheme named CONTRA to defend against poisoning attacks, e.g., label-flipping and backdoor attacks, in FL systems. CONTRA implements a cosine-similarity-based measure to determine the credibility of local model parameters in each round and a reputation scheme to dynamically promote or penalize individual clients based on their per-round and historical contributions to the global model. With extensive experiments, we show that CONTRA significantly reduces the attack success rate while achieving high accuracy with the global model. Compared with a state-of-the-art (SOTA) defense, CONTRA reduces the attack success rate by 70% and reduces the global model performance degradation by 50%. 
    more » « less
  3. null (Ed.)
    Federated learning (FL) allows a set of agents to collaboratively train a model without sharing their potentially sensitive data. This makes FL suitable for privacy-preserving applications. At the same time, FL is susceptible to adversarial attacks due to decentralized and unvetted data. One important line of attacks against FL is the backdoor attacks. In a backdoor attack, an adversary tries to embed a backdoor functionality to the model during training that can later be activated to cause a desired misclassification. To prevent backdoor attacks, we propose a lightweight defense that requires minimal change to the FL protocol. At a high level, our defense is based on carefully adjusting the aggregation server's learning rate, per dimension and per round, based on the sign information of agents' updates. We first conjecture the necessary steps to carry a successful backdoor attack in FL setting, and then, explicitly formulate the defense based on our conjecture. Through experiments, we provide empirical evidence that supports our conjecture, and we test our defense against backdoor attacks under different settings. We observe that either backdoor is completely eliminated, or its accuracy is significantly reduced. Overall, our experiments suggest that our defense significantly outperforms some of the recently proposed defenses in the literature. We achieve this by having minimal influence over the accuracy of the trained models. In addition, we also provide convergence rate analysis for our proposed scheme. 
    more » « less
  4. Neural network pruning is an essential technique for reducing the size and complexity of deep neural networks, enabling large-scale models on devices with limited resources. However, existing pruning approaches heavily rely on training data for guiding the pruning strategies, making them ineffective for federated learning over distributed and confidential datasets. Additionally, the memory- and computation-intensive pruning process becomes infeasible for recourse-constrained devices in federated learning. To address these challenges, we propose FedTiny, a distributed pruning framework for federated learning that generates specialized tiny models for memory-and computing-constrained devices. We introduce two key modules in FedTiny to adaptively search coarse- and finer-pruned specialized models to fit deployment scenarios with sparse and cheap local computation. First, an adaptive batch normalization selection module is designed to mitigate biases in pruning caused by the heterogeneity of local data. Second, a lightweight progressive pruning module aims to finer prune the models under strict memory and computational budgets, allowing the pruning policy for each layer to be gradually determined rather than evaluating the overall model structure. The experimental results demonstrate the effectiveness of FedTiny, which outperforms state-of-the-art approaches, particularly when compressing deep models to extremely sparse tiny models. FedTiny achieves an accuracy improvement of 2.61% while significantly reducing the computational cost by 95.91% and the memory footprint by 94.01% compared to state-of-the-art methods. 
    more » « less
  5. Deep learning has shown incredible potential across a wide array of tasks, and accompanied by this growth has been an insatiable appetite for data. However, a large amount of data needed for enabling deep learning is stored on personal devices, and recent concerns on privacy have further highlighted challenges for accessing such data. As a result, federated learning (FL) has emerged as an important privacy-preserving technology that enables collaborative training of machine learning models without the need to send the raw, potentially sensitive, data to a central server. However, the fundamental premise that sending model updates to a server is privacy-preserving only holds if the updates cannot be “reverse engineered” to infer information about the private training data. It has been shown under a wide variety of settings that this privacy premise doesnothold. In this article we provide a comprehensive literature review of the different privacy attacks and defense methods in FL. We identify the current limitations of these attacks and highlight the settings in which the privacy of an FL client can be broken. We further dissect some of the successful industry applications of FL and draw lessons for future successful adoption. We survey the emerging landscape of privacy regulation for FL and conclude with future directions for taking FL toward the cherished goal of generating accurate models while preserving the privacy of the data from its participants. 
    more » « less