skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1900778

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We outline the flexibility program in smooth dynamics, focusing on flexibility of Lyapunov exponents for volume-preserving diffeomorphisms. We prove flexibility results for Anosov diffeomorphisms admitting dominated splittings into one-dimensional bundles. 
    more » « less
  2. Abstract Consider a three-dimensional partially hyperbolic diffeomorphism. It is proved that under some rigid hypothesis on the tangent bundle dynamics, the map is (modulo finite covers and iterates) an Anosov diffeomorphism, a (generalized) skew-product or the time-one map of an Anosov flow, thus recovering a well-known classification conjecture of the second author to this restricted setting. 
    more » « less
  3. We introduce the matching functions technique in the setting of Anosov flows. Then we observe that simple periodic cycle functionals (also known as temporal distances) provide a source of matching functions for conjugate Anosov flows. For conservative codimension one Anosov flows φ<#comment/> t :<#comment/> M →<#comment/> M \varphi ^t\colon M\to M , dim ⁡<#comment/> M ≥<#comment/> 4 \dim M\ge 4 , these simple periodic cycle functionals are C 1 C^1 regular and, hence, can be used to improve regularity of the conjugacy. Specifically, we prove that a continuous conjugacy must, in fact, be a C 1 C^1 diffeomorphism for an open and dense set of codimension one conservative Anosov flows. 
    more » « less
  4. null (Ed.)