Let be a bounded -Reifenberg flat domain, with small enough, possibly with locally infinite surface measure. Assume also that is an NTA (non-tangentially accessible) domain as well and denote by and the respective harmonic measures of and with poles . In this paper we show that the condition that is equivalent to being a chord-arc domain with inner unit normal belonging to .
more »
« less
Smooth rigidity for codimension one Anosov flows
We introduce the matching functions technique in the setting of Anosov flows. Then we observe that simple periodic cycle functionals (also known as temporal distances) provide a source of matching functions for conjugate Anosov flows. For conservative codimension one Anosov flows , , these simple periodic cycle functionals are regular and, hence, can be used to improve regularity of the conjugacy. Specifically, we prove that a continuous conjugacy must, in fact, be a diffeomorphism for an open and dense set of codimension one conservative Anosov flows.
more »
« less
- PAR ID:
- 10468056
- Publisher / Repository:
- AMS
- Date Published:
- Journal Name:
- Proceedings of the American Mathematical Society
- Volume:
- 151
- Issue:
- 769
- ISSN:
- 0002-9939
- Page Range / eLocation ID:
- 2975 to 2988
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper we derive the best constant for the following -type Gagliardo-Nirenberg interpolation inequality where parameters and satisfy the conditions , . The best constant is given by where is the unique radial non-increasing solution to a generalized Lane-Emden equation. The case of equality holds when for any real numbers , and . In fact, the generalized Lane-Emden equation in contains a delta function as a source and it is a Thomas-Fermi type equation. For or , have closed form solutions expressed in terms of the incomplete Beta functions. Moreover, we show that and as for , where and are the function achieving equality and the best constant of -type Gagliardo-Nirenberg interpolation inequality, respectively.more » « less
-
Let be analytic on with for some constants and and all . We show that the median estimate of under random linear scrambling with points converges at the rate for any . We also get a super-polynomial convergence rate for the sample median of random linearly scrambled estimates, when is bounded away from zero. When has a ’th derivative that satisfies a -Hölder condition then the median of means has error for any , if as . The proof techniques use methods from analytic combinatorics that have not previously been applied to quasi-Monte Carlo methods, most notably an asymptotic expression from Hardy and Ramanujan on the number of partitions of a natural number.more » « less
-
We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable -category of non- -invariant motivic spectra, which turns out to be equivalent to the -category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this -category satisfies -homotopy invariance and weighted -homotopy invariance, which we use in place of -homotopy invariance to obtain analogues of several key results from -homotopy theory. These allow us in particular to define a universal oriented motivic -ring spectrum . We then prove that the algebraic K-theory of a qcqs derived scheme can be recovered from its -cohomology via a Conner–Floyd isomorphism\[ \]where is the Lazard ring and . Finally, we prove a Snaith theorem for the periodized version of .more » « less
An official website of the United States government

