skip to main content

Search for: All records

Award ID contains: 1900783

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Inverse rendering is a powerful approach to modeling objects from photographs, and we extend previous techniques to handle translucent materials that exhibit subsurface scattering. Representing translucency using a heterogeneous bidirectional scattering-surface reflectance distribution function (BSSRDF), we extend the framework of path-space differentiable rendering to accommodate both surface and subsurface reflection. This introduces new types of paths requiring new methods for sampling moving discontinuities in material space that arise from visibility and moving geometry. We use this differentiable rendering method in an end-to-end approach that jointly recovers heterogeneous translucent materials (represented by a BSSRDF) and detailed geometry of an object (represented by a mesh) from a sparse set of measured 2D images in a coarse-to-fine framework incorporating Laplacian preconditioning for the geometry. To efficiently optimize our models in the presence of the Monte Carlo noise introduced by the BSSRDF integral, we introduce a dual-buffer method for evaluating the L2 image loss. This efficiently avoids potential bias in gradient estimation due to the correlation of estimates for image pixels and their derivatives and enables correct convergence of the optimizer even when using low sample counts in the renderer. We validate our derivatives by comparing against finite differences and demonstrate the effectiveness ofmore »our technique by comparing inverse-rendering performance with previous methods. We show superior reconstruction quality on a set of synthetic and real-world translucent objects as compared to previous methods that model only surface reflection.« less
    Free, publicly-accessible full text available July 20, 2023
  2. The fashion sense -- meaning the clothing styles people wear -- in a geographical region can reveal information about that region. For example, it can reflect the kind of activities people do there, or the type of crowds that frequently visit the region (e.g., tourist hot spot, student neighborhood, business center). We propose a method to automatically create underground neighborhood maps of cities by analyzing how people dress. Using publicly available images from across a city, our method finds neighborhoods with a similar fashion sense and segments the map without supervision. For 37 cities worldwide, we show promising results in creating good underground maps, as evaluated using experiments with human judges and underground map benchmarks derived from non-image data. Our approach further allows detecting distinct neighborhoods (what is the most unique region of LA?) and answering analogy questions between cities (what is the "Downtown LA" of Bogota?).
  3. Modern recognition systems require large amounts of supervision to achieve accuracy. Adapting to new domains requires significant data from experts, which is onerous and can become too expensive. Zero-shot learning requires an annotated set of attributes for a novel category. Annotating the full set of attributes for a novel category proves to be a tedious and expensive task in deployment. This is especially the case when the recognition domain is an expert domain. We introduce a new field-guide-inspired approach to zero-shot annotation where the learner model interactively asks for the most useful attributes that define a class. We evaluate our method on classification benchmarks with attribute annotations like CUB, SUN, and AWA2 and show that our model achieves the performance of a model with full annotations at the cost of significantly fewer number of annotations. Since the time of experts is precious, decreasing annotation cost can be very valuable for real-world deployment.
  4. The process of capturing a well-composed photo is difficult and it takes years of experience to master. We propose a novel pipeline for an autonomous agent to automatically capture an aesthetic photograph by navigating within a local region in a scene. Instead of classical optimization over heuristics such as the rule-of-thirds, we adopt a data-driven aesthetics estimator to assess photo quality. A reinforcement learning framework is used to optimize the model with respect to the learned aesthetics metric. We train our model in simulation with indoor scenes, and we demonstrate that our system can capture aesthetic photos in both simulation and real world environments on a ground robot. To our knowledge, this is the first system that can automatically explore an environment to capture an aesthetic photo with respect to a learned aesthetic estimator. Source code is at
  5. Al-Kadi, Omar Sultan (Ed.)
    In this paper, we capture and explore the painterly depictions of materials to enable the study of depiction and perception of materials through the artists’ eye. We annotated a dataset of 19k paintings with 200k+ bounding boxes from which polygon segments were automatically extracted. Each bounding box was assigned a coarse material label (e.g., fabric) and half was also assigned a fine-grained label (e.g., velvety, silky). The dataset in its entirety is available for browsing and downloading at . We demonstrate the cross-disciplinary utility of our dataset by presenting novel findings across human perception, art history and, computer vision. Our experiments include a demonstration of how painters create convincing depictions using a stylized approach. We further provide an analysis of the spatial and probabilistic distributions of materials depicted in paintings, in which we for example show that strong patterns exists for material presence and location. Furthermore, we demonstrate how paintings could be used to build more robust computer vision classifiers by learning a more perceptually relevant feature representation. Additionally, we demonstrate that training classifiers on paintings could be used to uncover hidden perceptual cues by visualizing the features used by the classifiers. We conclude that our dataset of painterlymore »material depictions is a rich source for gaining insights into the depiction and perception of materials across multiple disciplines and hope that the release of this dataset will drive multidisciplinary research.« less
  6. We present PhySG, an end-to-end inverse rendering pipeline that includes a fully differentiable renderer, and can reconstruct geometry, materials, and illumination from scratch from a set of images. Our framework represents specular BRDFs and environmental illumination using mix- tures of spherical Gaussians, and represents geometry as a signed distance function parameterized as a Multi-Layer Perceptron. The use of spherical Gaussians allows us to efficiently solve for approximate light transport, and our method works on scenes with challenging non-Lambertian reflectance captured under natural, static illumination. We demonstrate, with both synthetic and real data, that our re- constructions not only enable rendering of novel viewpoints, but also physics-based appearance editing of materials and illumination.
  7. Physics-based differentiable rendering, the estimation of derivatives of ra- diometric measures with respect to arbitrary scene parameters, has a diverse array of applications from solving analysis-by-synthesis problems to train- ing machine learning pipelines incorporating forward rendering processes. Unfortunately, general-purpose differentiable rendering remains challenging due to the lack of efficient estimators as well as the need to identify and handle complex discontinuities such as visibility boundaries. In this paper, we show how path integrals can be differentiated with respect to arbitrary differentiable changes of a scene. We provide a detailed theoretical analysis of this process and establish new differentiable rendering formulations based on the resulting differential path integrals. Our path- space differentiable rendering formulation allows the design of new Monte Carlo estimators that offer significantly better efficiency than state-of-the-art methods in handling complex geometric discontinuities and light transport phenomena such as caustics.