skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1900888

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sage (Ed.)
    The convergence of extremely high levels of hardware concurrency and the effective overlap of computation and communication in asynchronous executions has resulted in increasing nondeterminism in High-Performance Computing (HPC) applications. Nondeterminism can manifest at multiple levels: from low-level communication primitives to libraries to application-level functions. No matter its source, nondeterminism can drastically increase the cost of result reproducibility, debugging workflows, testing parallel programs, or ensuring fault-tolerance. Nondeterministic executions of HPC applications can be modeled as event graphs, and the applications’ nondeterministic behavior can be understood and, in some cases, mitigated using graph comparison algorithms. However, a connection between graph comparison algorithms and approaches to understanding nondeterminism in HPC still needs to be established. This survey article moves the first steps toward establishing a connection between graph comparison algorithms and nondeterminism in HPC with its three contributions: it provides a survey of different graph comparison algorithms and a timeline for each category’s significant works; it discusses how existing graph comparison methods do not fully support properties needed to understand nondeterministic patterns in HPC applications; and it presents the open challenges that should be addressed to leverage the power of graph comparisons for the study of nondeterminism in HPC applications. 
    more » « less
  2. IEEE Computer Society (Ed.)