skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1902409

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Stratospheric ozone, and its response to anthropogenic forcings, provides an important pathway for the coupling between atmospheric composition and climate. In addition to stratospheric ozone’s radiative impacts, recent studies have shown that changes in the ozone layer due to 4xCO2have a considerable impact on the Northern Hemisphere (NH) tropospheric circulation, inducing an equatorward shift of the North Atlantic jet during boreal winter. Using simulations produced with the NASA Goddard Institute for Space Studies (GISS) high-top climate model (E2.2), we show that this equatorward shift of the Atlantic jet can induce a more rapid weakening of the Atlantic meridional overturning circulation (AMOC). The weaker AMOC, in turn, results in an eastward acceleration and poleward shift of the Atlantic and Pacific jets, respectively, on longer time scales. As such, coupled feedbacks from both stratospheric ozone and the AMOC result in a two-time-scale response of the NH midlatitude jet to abrupt 4xCO2forcing: a “fast” response (5–20 years) during which it shifts equatorward and a “total” response (∼100–150 years) during which the jet accelerates and shifts poleward. The latter is driven by a weakening of the AMOC that develops in response to weaker surface zonal winds that result in reduced heat fluxes out of the subpolar gyre and reduced North Atlantic Deep Water formation. Our results suggest that stratospheric ozone changes in the lower stratosphere can have a surprisingly powerful effect on the AMOC, independent of other aspects of climate change. 
    more » « less
  2. Abstract Understanding how the transport of gases and aerosols responds to climate change is necessary for policy making and emission controls. There is considerable spread in model projections of tracer transport in climate change simulations, largely because of the substantial uncertainty in projected changes in the large‐scale atmospheric circulation. In particular, a relationship between the response of tropospheric transport into the high latitudes and a shift of the midlatitude jet has been previously established in an idealized modeling study. To test the robustness of this relationship, we analyze the response of a passive tracer of northern midlatitude surface origin to abrupt 2xCO2and 4xCO2in a comprehensive climate model (Goddard Institute for Space Studies E2.2‐G). We show that a poleward shift of the northern midlatitude jet and enhanced eddy mixing along isentropes on the poleward flank of the jet result in decreased tracer concentrations over the midlatitudes and increased concentrations over the Arctic. This mechanism is robust in abrupt 2xCO2and 4xCO2simulations, the nonlinearity to CO2forcing, and two versions of the model with different atmospheric chemistry. Preliminary analysis of realistic chemical tracers suggests that the same mechanism can be used to provide insights into the climate change response of anthropogenic pollutants. 
    more » « less
  3. Abstract Many studies have documented the trends in the latitudinal position and strength of the midlatitude westerlies in the Southern Hemisphere. However, very little attention has been paid to the longitudinal variations of these trends. Here, we specifically focus on the zonal asymmetries in the southern hemisphere wind trends between 1980 and 2018. Meteorological reanalyses show a large strengthening and a statistically insignificant equatorward shift of peak near‐surface winds over the Pacific, in contrast to a weaker strengthening and significant poleward shift over the Atlantic and Indian Ocean sectors. The reanalysis trends fall within the ensemble spread for historical climate model simulations, showing that climate models are able to capture the observed trends. Climate model simulations indicate that the differential movement of the peak westerlies is a manifestation of internal variability and is not a forced response. Implications of these asymmetries for other components of the climate system are discussed. 
    more » « less
  4. Abstract Recent studies have shown a large spread in the transport of atmospheric tracers into the Arctic among a suite of chemistry climate models and have suggested that this is related to the spread in the meridional extent of the Hadley Cell (HC). Here we examine the HC‐transport relationship using an idealized model, where we vary the mean circulation and isolate its impact on transport to the Arctic. It is shown that the poleward transport depends on the relative position between the northern edge of the HC and the tracer source, with maximum transport occurring when the HC edge lies near the middle of the source region. Such dependence highlights the critical role of near‐surface transport by the Eulerian mean circulation rather than eddy mixing in the free troposphere and suggests that variations in the HC edge and the tracer source region are both important for modeling Arctic composition. 
    more » « less
  5. Abstract The subtropical jet (STJ) is thought to coexist with the edge of the Hadley cell (HC). However, recent studies reveal that the location of the STJ is poorly correlated with the latitude of the poleward edge of the HC. Here we use output from the Coupled Model Intercomparison Project Phase 5 to show that a weaker STJ is associated with a more poleward HC edge interannually, but there is a strengthening of the STJ and expansion of the HC in response to increased CO2. The HC expansion caused by increased CO2is much more rapid than the strengthening of the STJ. It is suggested that the differing response times and relationships between interannual variations and increased CO2are due to differing sensitivities of the HC and STJ to shifts in the eddy momentum fluxes. 
    more » « less
  6. Abstract. Recent work has shown that variability in the subtropical jet's (STJ) latitude, ϕSTJ, is not coupled to that of the Hadley cell (HC) edge, ϕHC, but the robustness of this disconnect has not been examined in detail. Here, we use meteorological reanalysis products, comprehensive climate models, and an idealized atmospheric model to determine the necessary processes for a disconnect between ϕHC and ϕSTJ in the Northern Hemisphere's December–January–February season. We find that a decoupling can occur in a dry general circulation model, indicating that large-scale dynamical processes are sufficient to reproduce the metrics' relationship. It is therefore not reliant on explicit variability in the zonal structure, convection, or radiation. Rather, the disconnect requires a sufficiently realistic climatological basic state. Further, we confirm that the robust disconnect between ϕSTJ and ϕHC across the model hierarchy reveals their differing sensitivities to midlatitude eddy momentum fluxes; ϕHC is consistently coupled to the latitude of maximum eddy momentum flux, but ϕSTJ is not. 
    more » « less
  7. Abstract There are a myriad of ways atmospheric circulation responds to increased CO 2 . In the troposphere, the region of the tropical upwelling narrows, the Hadley Cells expand, and the upper level subtropical zonal winds that comprise the subtropical jet strengthen. In the stratosphere, the tropical upwelling narrows and strengthens, enhancing the Brewer-Dobson Circulation. Despite the robustness of these projections, dynamical coupling between the features remains unclear. In this study, we analyze output from the NASA Goddard Institute for Space Studies (GISS) ModelE coupled climate model to examine any connection between the upper tropospheric and lower stratospheric circulation by considering the features’ seasonality, hemispheric asymmetry, scaling, and transient response to a broad range of CO 2 forcings. We find that a narrowing and strengthening of upper tropospheric upwelling occurs with a strengthening of the subtropical jet. There is also a narrowing and strengthening of lower stratospheric upwelling that is related to an equatorward shift in critical latitude for wave breaking and the associated strengthening of the subtropical lower stratosphere’s zonal winds. However, the stratospheric responses display different seasonal, hemispheric, and transient patterns than those in the troposphere, indicating independent circulation changes between the two domains. 
    more » « less
  8. Abstract Polar vortices are common planetary-scale flows that encircle the pole in the middle or high latitudes and are observed in most of the solar system’s planetary atmospheres. The polar vortices on Earth, Mars, and Titan are dynamically related to the mean meridional circulation and exhibit a significant seasonal cycle. However, the polar vortex’s characteristics vary between the three planets. To understand the mechanisms that influence the polar vortex’s dynamics and dependence on planetary parameters, we use an idealized general circulation model with a seasonal cycle in which we vary the obliquity, rotation rate, and orbital period. We find that there are distinct regimes for the polar vortex seasonal cycle across the parameter space. Some regimes have similarities to the observed polar vortices, including a weakening of the polar vortex during midwinter at slow rotation rates, similar to Titan’s polar vortex. Other regimes found within the parameter space have no counterpart in the solar system. In addition, we show that for a significant fraction of the parameter space, the vortex’s potential vorticity latitudinal structure is annular, similar to the observed structure of the polar vortices on Mars and Titan. We also find a suppression of storm activity during midwinter that resembles the suppression observed on Mars and Earth, which occurs in simulations where the jet velocity is particularly strong. This wide variety of polar vortex dynamical regimes that shares similarities with observed polar vortices, suggests that among exoplanets there can be a wide variability of polar vortices. 
    more » « less
  9. Abstract Zonal jets are common in planetary atmospheres. Their character, structure, and seasonal variability depend on the planetary parameters. During solstice on Earth and Mars, there is a strong westerly jet in the winter hemisphere and weak, low-level westerlies in the ascending regions of the Hadley cell in the summer hemisphere. This summer jet has been less explored in a broad planetary context, both due to the dominance of the winter jet and since the balances controlling it are more complex, and understanding them requires exploring a broader parameter regime. To better understand the jet characteristics on terrestrial planets and the transition between winter- and summer-dominated jet regimes, we explore the jet’s dependence on rotation rate and obliquity. Across a significant portion of the parameter space, the dominant jet is in the winter hemisphere, and the summer jet is weaker and restricted to the boundary layer. However, we show that for slow rotation rates and high obliquities, the strongest jet is in the summer rather than the winter hemisphere. Analysis of the summer jet’s momentum balance reveals that the balance is not simply cyclostrophic and that both boundary layer drag and vertical advection are essential. At high obliquities and slow rotation rates, the cross-equatorial winter cell is wide and strong. The returning poleward flow in the summer hemisphere is balanced by low-level westerlies through an Ekman balance and momentum is advected upward close to the ascending branch, resulting in a midtroposphere summer jet. 
    more » « less
  10. null (Ed.)