skip to main content

Search for: All records

Award ID contains: 1902642

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study assessed two different vortex initialization (VI) and relocation methods for improved prediction of tropical cyclones (TCs) over the Bay of Bengal (BoB) using the triply nested (27/9/3 km) state-of-the-art Hurricane Weather Research and Forecasting (HWRF) model. The first VI method, “cold-start,” obtained the initial TC vortex from the global analysis. The second one, “cyclic-start,” received the initial vortex from the 6-h forecast of the previous forecast cycle of the same model. In both the strategies, the vortex was corrected to the position, strength, and structure defined by the India Meteorological Department. A total of 32 forecast cases (from five cyclones) over the BoB were considered. The cyclic-start experiments yielded better initial structure and asymmetry as compared to the cold-start experiments. The average statistics indicated that the cyclic initialization improved the 24-h track prediction (by 29%), while the cold initialization was better for the 72-h prediction (by ~ 28%). The intensity was consistently improved in the cyclic-start experiment by up to 68%. The number of cyclic initializations depended on the TC duration. On average, the cyclic initialization improved the representation (strength and size) of the initial vortex up to nine cycles after the first cold start and exhibited an improved skillmore »of 25%; beyond nine cycles, the skill improvement was only 12%. Diagnostic analyses of very severe cyclonic storm (VSCS) Phailin (rapidly intensified) and VSCS Lehar (rapidly weakening) revealed that the cyclic initialization realistically represented equivalent potential temperature, upper-level cloud condensate, and moisture intrusion, which improved the model performance. This study brought out the benefit of the (cyclic) VI for improved TC prediction capabilities in the BoB basin.« less
  2. Abstract Extreme flooding over southern Louisiana in mid-August of 2016 resulted from an unusual tropical low that formed and intensified over land. We used numerical experiments to highlight the role of the ‘Brown Ocean’ effect (where saturated soils function similar to a warm ocean surface) on intensification and it’s modulation by land cover change. A numerical modeling experiment that successfully captured the flood event (control) was modified to alter moisture availability by converting wetlands to open water, wet croplands, and dry croplands. Storm evolution in the control experiment with wet antecedent soils most resembles tropical lows that form and intensify over oceans. Irrespective of soil moisture conditions, conversion of wetlands to croplands reduced storm intensity, and also, non-saturated soils reduced rain by 20% and caused shorter durations of high intensity wind conditions. Developing agricultural croplands and more so restoring wetlands and not converting them into open water can impede intensification of tropical systems that affect the area.