Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Let $D=(V,A)$ be a digraph. A vertex set $$K\subseteq V$$ is a quasi-kernel of $$D$$ if $$K$$ is an independent set in $$D$$ and for every vertex $$v\in V\setminus K$$, $$v$$ is at most distance 2 from $$K$$. In 1974, Chvátal and Lovász proved that every digraph has a quasi-kernel. P. L. Erdős and L. A. Székely in 1976 conjectured that if every vertex of $$D$$ has a positive indegree, then $$D$$ has a quasi-kernel of size at most $|V|/2$. This conjecture is only confirmed for narrow classes of digraphs, such as semicomplete multipartite, quasi-transitive, or locally semicomplete digraphs. In this note, we state a similar conjecture for all digraphs, show that the two conjectures are equivalent, and prove that both conjectures hold for a class of digraphs containing all orientations of 4-colorable graphs (in particular, of all planar graphs).more » « less
-
Let $$H$$ and $$F$$ be hypergraphs. We say $$H$$ {\em contains $$F$$ as a trace} if there exists some set $$S \subseteq V(H)$$ such that $$H|_S:=\{E\cap S: E \in E(H)\}$$ contains a subhypergraph isomorphic to $$F$$. In this paper we give an upper bound on the number of edges in a $$3$$-uniform hypergraph that does not contain $$K_{2,t}$$ as a trace when $$t$$ is large. In particular, we show that $$\lim_{t\to \infty}\lim_{n\to \infty} \frac{\mathrm{ex}(n, \mathrm{Tr}_3(K_{2,t}))}{t^{3/2}n^{3/2}} = \frac{1}{6}.$$ Moreover, we show $$\frac{1}{2} n^{3/2} + o(n^{3/2}) \leqslant \mathrm{ex}(n, \mathrm{Tr}_3(C_4)) \leqslant \frac{5}{6} n^{3/2} + o(n^{3/2})$$.more » « less
-
Gyárfas proved that every coloring of the edges of $$K_n$$ with $t+1$ colors contains a monochromatic connected component of size at least $n/t$. Later, Gyárfás and Sárközy asked for which values of $$\gamma=\gamma(t)$$ does the following strengthening for almost complete graphs hold: if $$G$$ is an $$n$$-vertex graph with minimum degree at least $$(1-\gamma)n$$, then every $(t+1)$-edge coloring of $$G$$ contains a monochromatic component of size at least $n/t$. We show $$\gamma= 1/(6t^3)$$ suffices, improving a result of DeBiasio, Krueger, and Sárközy.more » « less
-
A hypergraph $$\mathcal H$$ is super-pancyclic if for each $$A \subseteq V(\mathcal H)$$ with $$|A| \geqslant 3$$, $$\mathcal H$$ contains a Berge cycle with base vertex set $$A$$. We present two natural necessary conditions for a hypergraph to be super-pancyclic, and show that in several classes of hypergraphs these necessary conditions are also sufficient. In particular, they are sufficient for every hypergraph $$\mathcal H$$ with $$ \delta(\mathcal H)\geqslant \max\{|V(\mathcal H)|, \frac{|E(\mathcal H)|+10}{4}\}$$. We also consider super-cyclic bipartite graphs: those are $(X,Y)$-bigraphs $$G$$ such that for each $$A \subseteq X$$ with $$|A| \geqslant 3$$, $$G$$ has a cycle $$C_A$$ such that $$V(C_A)\cap X=A$$. Such graphs are incidence graphs of super-pancyclic hypergraphs, and our proofs use the language of such graphs.more » « less
-
We consider two extremal problems for set systems without long Berge cycles. First we give Dirac-type minimum degree conditions that force long Berge cycles. Next we give an upper bound for the number of hyperedges in a hypergraph with bounded circumference. Both results are best possible in infinitely many cases.more » « less
An official website of the United States government
