skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Conditions for a Bigraph to be Super-Cyclic
A hypergraph $$\mathcal H$$ is super-pancyclic if for each $$A \subseteq V(\mathcal H)$$ with $$|A| \geqslant 3$$, $$\mathcal H$$ contains a Berge cycle with base vertex set $$A$$. We present two natural necessary conditions for a hypergraph to be super-pancyclic, and show that in several classes of hypergraphs these necessary conditions are also sufficient. In particular, they are sufficient for every hypergraph $$\mathcal H$$ with $$ \delta(\mathcal H)\geqslant \max\{|V(\mathcal H)|, \frac{|E(\mathcal H)|+10}{4}\}$$. We also consider super-cyclic bipartite graphs: those are $(X,Y)$-bigraphs $$G$$ such that for each $$A \subseteq X$$ with $$|A| \geqslant 3$$, $$G$$ has a cycle $$C_A$$ such that $$V(C_A)\cap X=A$$. Such graphs are incidence graphs of super-pancyclic hypergraphs, and our proofs use the language of such graphs.  more » « less
Award ID(s):
1902808
PAR ID:
10458415
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Electronic Journal of Combinatorics
Volume:
28
Issue:
1
ISSN:
1077-8926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We develop a theory of linear isoperimetric inequalities for graphs on surfaces and apply it to coloring problems, as follows. Let $ G$ be a graph embedded in a fixed surface $$ \Sigma $$ of genus $ g$ and let $$ L=(L(v):v\in V(G))$$ be a collection of lists such that either each list has size at least five, or each list has size at least four and $ G$ is triangle-free, or each list has size at least three and $ G$ has no cycle of length four or less. An $ L$-coloring of $ G$ is a mapping $$ \phi $$ with domain $ V(G)$ such that $$ \phi (v)\in L(v)$$ for every $$ v\in V(G)$$ and $$ \phi (v)\ne \phi (u)$$ for every pair of adjacent vertices $$ u,v\in V(G)$$. We prove if every non-null-homotopic cycle in $ G$ has length $$ \Omega (\log g)$$, then $ G$ has an $ L$-coloring, if $ G$ does not have an $ L$-coloring, but every proper subgraph does (``$ L$-critical graph''), then $$ \vert V(G)\vert=O(g)$$, if every non-null-homotopic cycle in $ G$ has length $$ \Omega (g)$$, and a set $$ X\subseteq V(G)$$ of vertices that are pairwise at distance $$ \Omega (1)$$ is precolored from the corresponding lists, then the precoloring extends to an $ L$-coloring of $ G$, if every non-null-homotopic cycle in $ G$ has length $$ \Omega (g)$$, and the graph $ G$ is allowed to have crossings, but every two crossings are at distance $$ \Omega (1)$$, then $ G$ has an $ L$-coloring, if $ G$ has at least one $ L$-coloring, then it has at least $$ 2^{\Omega (\vert V(G)\vert)}$$ distinct $ L$-colorings. We show that the above assertions are consequences of certain isoperimetric inequalities satisfied by $ L$-critical graphs, and we study the structure of families of embedded graphs that satisfy those inequalities. It follows that the above assertions hold for other coloring problems, as long as the corresponding critical graphs satisfy the same inequalities. 
    more » « less
  2. Let $$H$$ and $$F$$ be hypergraphs. We say $$H$$ {\em contains $$F$$ as a trace} if there exists some set $$S \subseteq V(H)$$ such that $$H|_S:=\{E\cap S: E \in E(H)\}$$ contains a subhypergraph isomorphic to $$F$$. In this paper we give an upper bound on the number of edges in a $$3$$-uniform hypergraph that does not contain $$K_{2,t}$$ as a trace when $$t$$ is large. In particular, we show that $$\lim_{t\to \infty}\lim_{n\to \infty} \frac{\mathrm{ex}(n, \mathrm{Tr}_3(K_{2,t}))}{t^{3/2}n^{3/2}} = \frac{1}{6}.$$ Moreover, we show $$\frac{1}{2} n^{3/2} + o(n^{3/2}) \leqslant \mathrm{ex}(n, \mathrm{Tr}_3(C_4)) \leqslant \frac{5}{6} n^{3/2} + o(n^{3/2})$$. 
    more » « less
  3. Abstract Sidorenko’s conjecture states that, for all bipartite graphs $$H$$, quasirandom graphs contain asymptotically the minimum number of copies of $$H$$ taken over all graphs with the same order and edge density. While still open for graphs, the analogous statement is known to be false for hypergraphs. We show that there is some advantage in this, in that if Sidorenko’s conjecture does not hold for a particular $$r$$-partite $$r$$-uniform hypergraph $$H$$, then it is possible to improve the standard lower bound, coming from the probabilistic deletion method, for its extremal number $$\textrm{ex}(n,H)$$, the maximum number of edges in an $$n$$-vertex $$H$$-free $$r$$-uniform hypergraph. With this application in mind, we find a range of new counterexamples to the conjecture for hypergraphs, including all linear hypergraphs containing a loose triangle and all $$3$$-partite $$3$$-uniform tight cycles. 
    more » « less
  4. Dirac proved that each $$n$$-vertex $$2$$-connected graph with minimum degree $$k$$ contains a cycle of length at least $$\min\{2k, n\}$$. We obtain analogous results for Berge cycles in hypergraphs. Recently, the authors proved an exact lower bound on the minimum degree ensuring a Berge cycle of length at least $$\min\{2k, n\}$$ in $$n$$-vertex $$r$$-uniform $$2$$-connected hypergraphs when $$k \geq r+2$$. In this paper we address the case $$k \leq r+1$$ in which the bounds have a different behavior. We prove that each $$n$$-vertex $$r$$-uniform $$2$$-connected hypergraph $$H$$ with minimum degree $$k$$ contains a Berge cycle of length at least $$\min\{2k,n,|E(H)|\}$$. If $$|E(H)|\geq n$$, this bound coincides with the bound of the Dirac's Theorem for 2-connected graphs. 
    more » « less
  5. A _theta_ is a graph consisting of two non-adjacent vertices and three internally disjoint paths between them, each of length at least two. For a family $$\mathcal{H}$$ of graphs, we say a graph $$G$$ is $$\mathcal{H}$$-_free_ if no induced subgraph of $$G$$ is isomorphic to a member of $$\mathcal{H}$$. We prove a conjecture of Sintiari and Trotignon, that there exists an absolute constant $$c$$ for which every (theta, triangle)-free graph $$G$$ has treewidth at most $$c\log (|V(G)|)$$. A construction by Sintiari and Trotignon shows that this bound is asymptotically best possible, and (theta, triangle)-free graphs comprise the first known hereditary class of graphs with arbitrarily large yet logarithmic treewidth.Our main result is in fact a generalization of the above conjecture, that treewidth is at most logarithmic in $|V(G)|$ for every graph $$G$$ excluding the so-called _three-path-configurations_ as well as a fixed complete graph. It follows that several NP-hard problems such as Stable Set, Vertex Cover, Dominating Set and $$k$$-Coloring (for fixed $$k$$) admit polynomial time algorithms in graphs excluding the three-path-configurations and a fixed complete graph. 
    more » « less