skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1903332

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We point out the dominant importance of plasma injection effects of relativistic winds from pulsars and black holes. We demonstrate that outside the light cylinder, the magnetically dominated outflows sliding along the helical magnetic field move nearly radially with very large Lorentz factors,γ0≫ 1, imprinted into the flow during pair production within the gaps. Only at larger distances,r≥γ0(c/Ω), does MHD acceleration Γ ∝rtake over. As a result, Blandford–Znajek (BZ)-driven outflows produce spine-brightened images. The best-resolved case of the jet in M87 shows both edge-brightened features, as well as weaker spine-brightened features. Only the spine-brightened component can be BZ driven/originate from the black hole's magnetosphere. 
    more » « less
  2. ABSTRACT We reconsider the escape of high-brightness coherent emission of fast radio bursts (FRBs) from magnetars’ magnetospheres, and conclude that there are numerous ways for the powerful FRB pulse to avoid non-linear absorption. Sufficiently strong surface magnetic fields, $$\ge 10{{\ \rm per\ cent}}$$ of the quantum field, limit the waves’ non-linearity to moderate values. For weaker fields, the electric field experienced by a particle is limited by a combined ponderomotive and parallel-adiabatic forward acceleration of charges by the incoming FRB pulse along the magnetic field lines newly opened during FRB/coronal mass ejection. As a result, particles surf the weaker front part of the pulse, experiencing low radiative losses, and are cleared from the magnetosphere for the bulk of the pulse to propagate. We also find that initial mildly relativistic radial plasma flow further reduces losses. 
    more » « less
  3. ABSTRACT We study dynamics of relativistic coronal mass ejections (CMEs), from launching by shearing of foot-points (either slowly – the ‘Solar flare’ paradigm, or suddenly – the ‘star quake’ paradigm), to propagation in the preceding magnetar wind. For slow shear, most of the energy injected into the CME is first spent on the work done on breaking through the overlaying magnetic field. At later stages, sufficiently powerful CMEs may lead to the ‘detonation’ of a CME and opening of the magnetosphere beyond some equipartition radius req, where the decreasing energy of the CME becomes larger than the decreasing external magnetospheric energy. Post-CME magnetosphere relaxes via the formation of a plasmoid-mediated current sheet, initially at ∼req, and slowly reaching the light cylinder. Both the location of the foot-point shear and the global magnetospheric configuration affect the frequent/weak versus rare/powerful CME dichotomy – to produce powerful flares, the slow shear should be limited to field lines that close in near the star. After the creation of a topologically disconnected flux tube, the tube quickly (at ∼ the light cylinder) comes into force-balance with the preceding wind and is passively advected/frozen in the wind afterward. For fast shear (a local rotational glitch), the resulting large amplitude Alfvén waves lead to the opening of the magnetosphere (which later recovers similarly to the slow shear case). At distances much larger than the light cylinder, the resulting shear Alfvén waves propagate through the wind non-dissipatively. 
    more » « less
  4. Abstract Magnetars, the likely sources of Fast Radio Bursts (FRBs), produce both steady highly relativistic magnetized winds, and occasional ejection events. We demonstrate that the requirement of conservation of the magnetic flux dominates the overall dynamics of magnetic explosions. This is missed in conventional hydrodynamic models of the ejections as expanding shell with parametrically added magnetic field, as well as one-dimensional models of magnetic disturbances. Magnetic explosions from magnetars come into force balance with the pre-flare wind close to the light cylinder. They are then advected quietly with the wind, or propagate as electromagnetic disturbances. No powerful shock waves are generated in the wind. 
    more » « less
  5. null (Ed.)
    Abstract We develop a model for the radio afterglow of the giant flare of SGR 1806-20 arising due to the interaction of magnetically-dominated cloud, an analogue of Solar Coronal Mass Ejections (CMEs), with the interstellar medium (ISM). The CME is modeled as a spheromak-like configuration. The CME is first advected with the magnetar’s wind and later interacts with the ISM, creating a strong forward shock and complicated backwards exhaust flow. Using three-dimensional magnetohydrodynamic simulations, we study various relative configurations of the magnetic field of the CME with respect to the ISM’s magnetic field. We show that the dynamics of the forward shock mostly follows the Sedov-Taylor blastwave, while the internal structure of the shocked medium is considerably modified by the back flow, creating a multiple shock configuration. We calculate synthetic synchrotron emissivity maps and light curves using two assumptions: (i) magnetic field compression; (ii) amplification of the magnetic field at the shock. We find that models with magnetic field amplification account better for the observed radio emission. 
    more » « less