skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Jump-starting Relativistic Flows and the M87 Jet
Abstract We point out the dominant importance of plasma injection effects of relativistic winds from pulsars and black holes. We demonstrate that outside the light cylinder, the magnetically dominated outflows sliding along the helical magnetic field move nearly radially with very large Lorentz factors,γ0≫ 1, imprinted into the flow during pair production within the gaps. Only at larger distances,r≥γ0(c/Ω), does MHD acceleration Γ ∝rtake over. As a result, Blandford–Znajek (BZ)-driven outflows produce spine-brightened images. The best-resolved case of the jet in M87 shows both edge-brightened features, as well as weaker spine-brightened features. Only the spine-brightened component can be BZ driven/originate from the black hole's magnetosphere.  more » « less
Award ID(s):
1903332
PAR ID:
10550113
Author(s) / Creator(s):
;
Publisher / Repository:
Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
962
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Black hole–neutron star binaries are of interest in many ways: they are intrinsically transient, radiate gravitational waves detectable by LIGO, and may produceγ-ray bursts. Although it has long been assumed that their late-stage orbital evolution is driven entirely by gravitational wave emission, we show here that in certain circumstances, mass transfer from the neutron star onto the black hole can both alter the binary's orbital evolution and significantly reduce the neutron star's mass: when the fraction of its mass transferred per orbit is ≳10−2, the neutron star's mass diminishes by order unity, leading to mergers in which the neutron star mass is exceptionally small. The mass transfer creates a gas disk around the black holebeforemerger that can be comparable in mass to the debris remaining after merger, i.e., ~0.1M. These processes are most important when the initial neutron star–black hole mass ratioqis in the range ≈0.2–0.8, the orbital semimajor axis is 40 ≲ a0/rg ≲ 300 (rg ≡ GMBH/c2), and the eccentricity is large ate0 ≳ 0.8. Systems of this sort may be generated through the dynamical evolution of a triple system, as well as by other means. 
    more » « less
  2. Abstract Observations and simulations have demonstrated that star formation in galaxies must be actively suppressed to prevent the formation of overly massive galaxies. Galactic outflows driven by stellar feedback or supermassive black hole accretion are often invoked to regulate the amount of cold molecular gas available for future star formation but may not be the only relevant quenching processes in all galaxies. We present the discovery of vast molecular tidal features extending up to 64 kpc outside of a massivez= 0.646 post-starburst galaxy that recently concluded its primary star-forming episode. The tidal tails contain (1.2 ± 0.1) × 1010Mof molecular gas, 47% ± 5% of the total cold gas reservoir of the system. Both the scale and magnitude of the molecular tidal features are unprecedented compared to all known nearby or high-redshift merging systems. We infer that the cold gas was stripped from the host galaxies during the merger, which is most likely responsible for triggering the initial burst phase and the subsequent suppression of star formation. While only a single example, this result shows that galaxy mergers can regulate the cold gas contents in distant galaxies by directly removing a large fraction of the molecular gas fuel, and plausibly suppress star formation directly, a qualitatively different physical mechanism than feedback-driven outflows. 
    more » « less
  3. Abstract We present new observations of the central 1 kpc of the M82 starburst obtained with the James Webb Space Telescope near-infrared camera instrument at a resolutionθ∼ 0.″05–0.″1 (∼1–2 pc). The data comprises images in three mostly continuum filters (F140M, F250M, and F360M), and filters that contain [Feii] (F164N), H2v= 1 → 0 (F212N), and the 3.3μm polycyclic aromatic hydrocarbon (PAH) feature (F335M). We find prominent plumes of PAH emission extending outward from the central starburst region, together with a network of complex filamentary substructures and edge-brightened bubble-like features. The structure of the PAH emission closely resembles that of the ionized gas, as revealed in Paschenαand free–free radio emission. We discuss the origin of the structure, and suggest the PAHs are embedded in a combination of neutral, molecular, and photoionized gas. 
    more » « less
  4. Abstract Galaxy formation and evolution are regulated by the feedback from galactic winds. Absorption lines provide the most widely available probe of winds. However, since most data only provide information integrated along the line of sight, they do not directly constrain the radial structure of the outflows. In this paper, we present a method to directly measure the gas electron density in outflows (ne), which in turn yields estimates of outflow cloud properties (e.g., density, volume filling factor, and sizes/masses). We also estimate the distance (rn) from the starburst at which the observed densities are found. We focus on 22 local star-forming galaxies primarily from the COS Legacy Archive Spectroscopic SurveY (CLASSY). In half of them, we detect absorption lines from fine-structure excited transitions of Siii(i.e., Siii*). We determinenefrom relative column densities of Siiiand Siii*, given Siii* originates from collisional excitation by free electrons. We find that the derivednecorrelates well with the galaxy’s star formation rate per unit area. From photoionization models or assuming the outflow is in pressure equilibrium with the wind fluid, we getrn∼ 1–2r*or ∼5r*, respectively, wherer*is the starburst radius. Based on comparisons to theoretical models of multiphase outflows, nearly all of the outflows have cloud sizes large enough for the clouds to survive their interaction with the hot wind fluid. Most of these measurements are the first ever for galactic winds detected in absorption lines and, thus, will provide important constraints for future models of galactic winds. 
    more » « less
  5. Abstract We present uniform modeling of eight kilonovae, five following short gamma-ray bursts (GRBs; including GRB 170817A) and three following long GRBs. We model their broadband afterglows to determine the relative contributions of afterglow and kilonova emission. We fit the kilonovae using a three-component model inMOSFiT, and report population median ejecta masses for the total, blue (κB = 0.5 cm2g−1), purple (κP = 3 cm2g−1), and red (κR = 10 cm2g−1) components. The kilonova of GW170817 is near the sample median in most derived properties. We investigate trends between the ejecta masses and the isotropic-equivalent and beaming-correctedγ-ray energies (Eγ,iso,Eγ), as well as rest-frame durations (T90,rest). We find long GRB kilonovae have higher median red ejecta masses (Mej,R ≳ 0.05M) compared to on-axis short GRB kilonovae (Mej,R ≲ 0.02M). We also observe a weak scaling between the total and red ejecta masses withEγ,isoandEγ, though a larger sample is needed to establish a significant correlation. These findings imply a connection between merger-driven long GRBs and larger tidal dynamical ejecta masses, which may indicate that their progenitors are asymmetric compact object binaries. We produce representative kilonova light curves, and find that the planned depths and cadences of the Rubin and Roman Observatory surveys will be sufficient for order-of-magnitude constraints onMej,B(and, for Roman,Mej,PandMej,R) of future kilonovae atz ≲ 0.1. 
    more » « less