skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1903340

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Salinity has been reported to impact the octanol–water partition coefficient of organic contaminants entering aquatic ecosystems. However, limited data are available on the impacts of salinity on their partitioning from the aqueous phase to adjacent organic compartments. The pesticides bifenthrin, chlorpyrifos, dicloran, myclobutanil, penconazole, and triadimefon were used to investigate the effects of salinity on their partitioning to capelin (Mallotus villosus) eggs in 5 practical salinity units (PSU) versus 25 PSU artificial seawater (ASW). The partitioning coefficient was significantly higher in 25 versus 5 PSU ASW for bifenthrin, chlorpyrifos, dicloran, penconazole, and triadimefon by 31%, 28%, 35%, 28%, and 20%, respectively, while for myclobutanil there was no significant difference. Moreover, pesticide partitioning to store‐bought capelin eggs was consistent with the partitioning observed for the standard assay species, inland silversides (Menidia beryllina) eggs, after partitioning between the eggs and exposure solution had reached a state of equilibrium. The present study illustrates the importance of considering the influence of salinity on the environmental partitioning and fate of hydrophobic organic contaminants in aquatic ecosystems.Environ Toxicol Chem2024;43:299–306. © 2023 SETAC. 
    more » « less
  2. Abstract While salinity can alter the photodegradation of hydrophobic organic compounds (HOCs), the cause of their altered kinetics in seawater is not well understood. Because HOC intermediate photoproducts are often more toxic than their parent compounds, characterizing the generation of intermediates in saline environments is needed to accurately predict their health effects. The present study investigated the influence of salinity on the generation of anthraquinone through the photolysis of anthracene and the generation of anthrone and 1-hydroxyanthraquinone from the photolysis of anthraquinone as well as their reactivities with hydroxyl radicals. This was conducted by measuring the photolysis rates of anthracene and anthraquinone and characterizing their product formation in buffered deionized water, artificial seawater, individual seawater halides (bromide, chloride, and iodide), dimethyl sulfoxide, furfuryl alcohol, and solutions of hydrogen peroxide. Salinity enhanced the persistence of anthraquinone by a factor >10 and altered its product formation, including the generation of the suspected carcinogen 1-hydroxyanthraquinone. In part, this was attributed to reactive oxygen species (ROS) scavenging by the seawater constituents chloride and bromide. In addition, anthraquinone and its hydroxylated products were found to be moderately to highly reactive with hydroxyl radicals, further illustrating their tendency to react with ROS in aqueous environments. The present study emphasizes the importance of considering the effects of salinity on organic contaminant degradation; it can significantly enhance the persistence of HOCs and alter their intermediate formation, subsequently impacting chemical exposure times and potential toxic effects on estuarine/marine organisms. Environ Toxicol Chem 2023;42:1721–1729. © 2023 SETAC. 
    more » « less
  3. This dataset comprises daily numerical results for 2021, generated by a coupled hydrodynamic-biogeochemical model applied to the Gulf of Mexico. The model features a horizontal resolution of 1 km and 18 vertical sigma layers. The dataset includes 2D variables at the ocean surface, such as seawater salinity, temperature, pH, aragonite saturation rate, alkalinity concentration, total inorganic carbon concentration, partial pressure of carbon dioxide, and air-sea flux of carbon dioxide. 
    more » « less
  4. Abstract. Coupled physical–biogeochemical models can fill thespatial and temporal gap in ocean carbon observations. Challenges ofapplying a coupled physical–biogeochemical model in the regional oceaninclude the reasonable prescription of carbon model boundary conditions,lack of in situ observations, and the oversimplification of certainbiogeochemical processes. In this study, we applied a coupledphysical–biogeochemical model (Regional Ocean Modelling System, ROMS) to theGulf of Mexico (GoM) and achieved an unprecedented 20-year high-resolution(5 km, 1/22∘) hindcast covering the period of 2000 to 2019. Thebiogeochemical model incorporated the dynamics of dissolved organic carbon(DOC) pools and the formation and dissolution of carbonate minerals. Thebiogeochemical boundaries were interpolated from NCAR's CESM2-WACCM-FV2solution after evaluating the performance of 17 GCMs in the GoM waters. Modeloutputs included carbon system variables of wide interest, such aspCO2, pH, aragonite saturation state (ΩArag), calcitesaturation state (ΩCalc), CO2 air–sea flux, and carbon burialrate. The model's robustness is evaluated via extensive model–datacomparison against buoys, remote-sensing-based machine learning (ML)products, and ship-based measurements. A reassessment of air–sea CO2flux with previous modeling and observational studies gives us confidencethat our model provides a robust and updated CO2 flux estimation, andNGoM is a stronger carbon sink than previously reported. Model resultsreveal that the GoM water has been experiencing a ∼ 0.0016 yr−1 decrease in surface pH over the past 2 decades, accompanied by a∼ 1.66 µatm yr−1 increase in sea surfacepCO2. The air–sea CO2 exchange estimation confirms in accordance with severalprevious models and ocean surface pCO2 observations that theriver-dominated northern GoM (NGoM) is a substantial carbon sink, and theopen GoM is a carbon source during summer and a carbon sink for the rest ofthe year. Sensitivity experiments are conducted to evaluate the impacts ofriver inputs and the global ocean via model boundaries. The NGoM carbonsystem is directly modified by the enormous carbon inputs (∼ 15.5 Tg C yr−1 DIC and ∼ 2.3 Tg C yr−1 DOC) from theMississippi–Atchafalaya River System (MARS). Additionally,nutrient-stimulated biological activities create a ∼ 105 timeshigher particulate organic matter burial rate in NGoM sediment than in thecase without river-delivered nutrients. The carbon system condition of theopen ocean is driven by inputs from the Caribbean Sea via the Yucatan Channeland is affected more by thermal effects than biological factors. 
    more » « less
  5. Changing salinity in estuaries due to sea level rise and altered rainfall patterns, as a result of climate change, has the potential to influence the interactions of aquatic pollutants as well as to alter their toxicity. From a chemical property point of view, ionic concentration can increase the octanol–water partition coefficient and thus decrease the water solubility of a compound. Biologically, organism physiology and enzyme metabolism are also altered at different salinities with implications for drug metabolism and toxic effects. This highlights the need to understand the influence of salinity on pesticide toxicity when assessing risk to estuarine and marine fishes, particularly considering that climate change is predicted to alter salinity regimes globally and many risk assessments and regulatory decisions are made using freshwater studies. Therefore, we exposed the Inland Silverside (Menidia beryllina) at an early life stage to seven commonly used pesticides at two salinities relevant to estuarine waters (5 PSU and 15 PSU). Triadimefon was the only compound to show a statistically significant increase in toxicity at the 15 PSU LC50. However, all compounds showed a decrease in LC50 values at the higher salinity, and all but one showed a decrease in the LC10 value. Many organisms rely on estuaries as nurseries and increased toxicity at higher salinities may mean that organisms in critical life stages of development are at risk of experiencing adverse, toxic effects. The differences in toxicity demonstrated here have important implications for organisms living within estuarine and marine ecosystems in the Anthropocene as climate change alters estuarine salinity regimes globally. 
    more » « less
  6. null (Ed.)