Carbon dioxide (CO2) concentrations affect the growth rate of plants by increasing photosynthesis. Increasing CO2 in controlled environment agriculture (CEA) provides a means to boost yield or decrease daily light integral (DLI) requirements, potentially increasing profitability of growing operations. However, increases in carbon dioxide concentrations are often correlated with decreased nutritional content of crops. The objectives of this experiment were to quantify the effects of carbon dioxide on the growth, morphology, and nutritional content of two lettuce varieties, ‘Rex’ and ‘Rouxai’ under four CO2 concentrations. Applied CO2 treatments were 400, 800, 1200, and 1600 ppm in controlled environment chambers with identical DLI. Lettuce was germinated for eight days in a greenhouse, then transplanted into potting mix and placed in a growth chamber illuminated by fluorescent lights. After 21 days, lettuce was destructively harvested, and fresh weight and plant volume were measured. Anthocyanins, xanthophylls, chlorophyll, and mineral concentration were measured. The lettuce fresh and dry weight increased with increasing CO2 concentrations, with the greatest increases observed between 400 and 800 ppm, and diminishing increases as CO2 concentration further increased to 1200 and 1600 ppm. Violaxanthin was observed to decrease in ‘Rouxai’ with increasing CO2 concentration. Largely, no significant differences were observed in lutein, anthocyanins, and mineral content. Overall, increasing concentrations of carbon dioxide can significantly increase the yield for lettuce in controlled environments, while not significantly reducing many of the nutritional components.
more »
« less
Gulf of Mexico coupled hydrodynamic-biogeochemical model (1km) results for 2021
This dataset comprises daily numerical results for 2021, generated by a coupled hydrodynamic-biogeochemical model applied to the Gulf of Mexico. The model features a horizontal resolution of 1 km and 18 vertical sigma layers. The dataset includes 2D variables at the ocean surface, such as seawater salinity, temperature, pH, aragonite saturation rate, alkalinity concentration, total inorganic carbon concentration, partial pressure of carbon dioxide, and air-sea flux of carbon dioxide.
more »
« less
- Award ID(s):
- 1903340
- PAR ID:
- 10560002
- Publisher / Repository:
- Zenodo
- Date Published:
- Format(s):
- Medium: X
- Right(s):
- Creative Commons Attribution 4.0 International
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Since ancient times, Korean chefs have fermented foods in an onggi, a traditional earthenware vessel. The porous structure of the onggi mimics the loose soil where lactic acid bacteria is naturally found. This permeability has been purported to facilitate the growth of lactic acid bacteria, but the details of the process remain poorly understood. In this combined experimental and theoretical study, we ferment salted napa cabbage in onggi and hermetic glassware and measure the time course of carbon dioxide concentration, which is a signature of fermentation. We present a mathematical model for carbon dioxide generation rate during fermentation using the onggi’s gas permeability as a free parameter. Our model provides a good fit for the data, and we conclude that porous walls help the onggi to ‘exhale’ carbon dioxide, lowering internal levels to those favoured by lactic acid bacteria. The positive pressure inside the onggi and the constant outflow through its walls act as a safety valve for bacteria growth by blocking the entry of external contaminants without mechanical components. We hope this study draws attention to the work of traditional artisans and inspires energy-efficient methods for fermenting and storing food products.more » « less
-
Abstract The electroreduction of carbon dioxide offers a promising avenue to produce valuable fuels and chemicals using greenhouse gas carbon dioxide as the carbon feedstock. Because industrial carbon dioxide point sources often contain numerous contaminants, such as nitrogen oxides, understanding the potential impact of contaminants on carbon dioxide electrolysis is crucial for practical applications. Herein, we investigate the impact of various nitrogen oxides, including nitric oxide, nitrogen dioxide, and nitrous oxide, on carbon dioxide electroreduction on three model electrocatalysts (i.e., copper, silver, and tin). We demonstrate that the presence of nitrogen oxides (up to 0.83%) in the carbon dioxide feed leads to a considerable Faradaic efficiency loss in carbon dioxide electroreduction, which is caused by the preferential electroreduction of nitrogen oxides over carbon dioxide. The primary products of nitrogen oxides electroreduction include nitrous oxide, nitrogen, hydroxylamine, and ammonia. Despite the loss in Faradaic efficiency, the electrocatalysts exhibit similar carbon dioxide reduction performances once a pure carbon dioxide feed is restored, indicating a negligible long-term impact of nitrogen oxides on the catalytic properties of the model catalysts.more » « less
-
A vehicular adsorbed natural gas (ANG) tank system operates as a mobile, dual gas storage/separation system to enable off-the-natural-gas-grid producers of biogas to use, ship, and process biogas for: (a) onboard delivery to engine of on-demand delivery of methane-rich fuel to an internal-combustion engine; (b) onboard separation of methane from carbon dioxide and extraction of unused fuel as carbon-dioxide-rich commodity, and (c) and large-scale, tractor-trailer shipping of biogas to a biogas upgrading plant and separation of methane from carbon dioxide during discharge at the plant. A mobile tank system on a vehicle comprises vessels filled with porous adsorbent and pressure valves; pressure regulators; pressure/temperature transducers at inlet, outlet, intermediate ports; and an onboard compressor/gas extraction pump. The tank discharging procedure for the separation of biogas into methane and carbon dioxide is such that the concentration of methane in discharged gas is at least 10% greater than in biogas.more » « less
-
The data provided here are from cruise SKQ2021-08S onboard the R/V Sikuliaq from May 21-June11, 2021 in the Bering and Chukchi Seas. The objective of the study was to evaluate the spatiotemporal dynamics of the carbon dioxide seawater system in the Pacific Arctic during the time of active sea ice retreat. This dataset includes discrete water column data for dissolved inorganic carbon and spectrophotometric pH on the total scale (measured at 25 degrees Celsius) along with nutrients, dissolved organic carbon, and in-situ hydrographic parameters. The outputs from carbonate system calculations (e.g., aragonite saturation state, in-situ pH) are also included. The dataset also includes continuous surface partial pressure of carbon dioxide (pCO2) data in both ppm and uatm measured at 15 minute intervals.more » « less
An official website of the United States government
