Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Tree rings have been central to the understanding of variability of flow of the Colorado River. Spurred by steadily declining flows after the 1920s, early tree‐ring research drew attention to the importance of climate variability to water supply by identifying episodes in the past that were even drier. Application of modern statistical methods to tree‐ring data later yielded a reconstruction of annual flows at Lees Ferry back to the early 1500s that highlighted the unprecedented wetness of the base period for the 1922 Colorado River Compact. That reconstruction served as the framework for a collection of papers in a 1995 special issue ofWater Resources Bulletinon coping with severe sustained drought on the Colorado River. This retrospective paper reviews historical aspects of the dendrohydrology of the Colorado River, and the updates since 1995. A constantly expanding tree‐ring network has been subjected to an array of new statistical approaches to reconstruction. Climate change and increasing demand for water have meanwhile driven increased interest in the processing and presentation of reconstructions for optimal use in water resources planning and management. While highlighting the robustness of main findings of earlier studies, recent research yields improved estimates of magnitudes of flow anomalies, extends annual flows to more than 1200 years, and underscores unmatched drought duration in the medieval period.more » « less
-
The year-to-year variability of precipitation has significant consequences for water management and forest health. “Whiplash” describes an extreme mode of this variability in which hydroclimate switches abruptly between wet and dry conditions. In this study, a pool of total-ring-width indices from five conifer species (Abies magnifica, Juniperus grandis, Pinus ponderosa, Pinus jeffreyi, and Tsuga mertensiana) in the Sierra Nevada is used to develop reconstructions of water-year precipitation using stepwise linear regression on lagged chronologies, and the reconstructions are analyzed for their ability to track whiplash events. A nonparametric approach is introduced to statistically classify positive and negative events, and the success of matching observed events with the reconstructions is evaluated using a hypergeometric test. Results suggest that reconstructions can effectively track whiplash events, but that tracking ability differs among species and sites. Although negative (dry-to-wet) events (1921–1989) are generally tracked more consistently than positive events, Tsuga stands out for strong tracking of positive events. Tracking ability shows no clear relationship to variance explained by reconstructions, suggesting that efforts to extend whiplash records with tree-ring data should consider optimizing reconstruction models for the whiplash signal.more » « less
-
Annual river discharge is a critical variable for water resources planning and management. Tree rings are widely used to reconstruct annual discharge, but errors can be large when tree growth fails to respond commensurately to hydrologically important seasonal components of climate. This paper contrasts direct and indirect reconstruction as statistical approaches to discharge reconstruction for the Chemora River, in semi-arid northeastern Algeria, and explores indirect reconstruction as a diagnostic tool in reconstruction error analysis. We define direct reconstruction as predictions from regression of annual discharge on tree ring data, and indirect reconstruction as predictions from a four-stage process: (1) regression of precipitation on tree rings, (2) application of the regression model to get reconstructed precipitation for grid cells over the basin, (3) routing of reconstructed precipitation through a climatological water balance (WB) model, and (4) summing model runoff over cells to get the reconstructed discharge at a gage location. For comparative purposes, the potential predictors in both modeling approaches are the same principal components of tree ring width chronologies from a network of drought-sensitive sites of Pinus halepensis and Cedrus atlantica in northern Algeria. Results suggest that both modeling approaches can yield statistically significant reconstructions for the Chemora River. Greater accuracy and simplicity of the direct method are countered by conceptual physical advantages of the indirect method. The WB modeling inherent to the indirect method is useful as a diagnostic tool in error analysis of discharge reconstruction, points out the low and declining importance of snowmelt to the river discharge, and gives clues to the cause of severe underestimation of discharge in the outlier high-discharge year 1996. Results show that indirect reconstruction would benefit most in this basin from tree ring resolution of seasonal precipitation.more » « less
An official website of the United States government
