Abstract Regional warming and associated changes in hydrologic systems pose challenges to water supply management in river basins of the western United States and call for improved understanding of the spatial and temporal variability of runoff. We apply a network of total width, subannual width, and delta blue intensity tree-ring chronologies in combination with a monthly water balance model to identify droughts and their associated precipitationPand temperatureTfootprints in the Truckee–Carson River basin (TCRB). Stepwise regression gave reasonably accurate reconstructions, from 1688 to 1999, of seasonalPandT(e.g.,R2= 0.50 for May–SeptemberT). These were disaggregated to monthly values, which were then routed through a water balance model to generate “indirectly” reconstructed runoff. Reconstructed and observed annual runoff correlate highly (r= 0.80) from 1906 to 1999. The extended runoff record shows that twentieth-century droughts are unmatched in severity in a 300-yr context. Our water balance modeling reconstruction advances the conventional regression-based dendrochronological methods as it allows for multiple hydrologic components (evapotranspiration, snowmelt, etc.) to be evaluated. We found that imposed warming (3° and 6°C) generally exacerbated the runoff deficits in past droughts but that impact could be lessened and sometimes even reversed in some years by compensating factors, including changes in snow regime. Our results underscore the value of combining multiproxy tree-ring data with water balance modeling to place past hydrologic droughts in the context of climate change. Significance StatementWe show how water balance modeling in combination with tree-ring data helps place modern droughts in the context of the past few centuries and a warming climate. Seasonal precipitation and temperature were reconstructed from multiproxy tree-ring data for a mountainous location near Lake Tahoe, and these reconstructions were routed through a water balance model to get a record of monthly runoff, snowmelt, and other water balance variables from 1688 to 1999. The resulting extended annual runoff record highlights the unmatched severity of twentieth-century droughts. A warming of 3°C imposed on reconstructed temperature generally exacerbates the runoff anomalies in past droughts, but this effect is sometimes offset by warming-related changes in the snow regime.
more »
« less
Direct Versus Indirect Tree Ring Reconstruction of Annual Discharge of Chemora River, Algeria
Annual river discharge is a critical variable for water resources planning and management. Tree rings are widely used to reconstruct annual discharge, but errors can be large when tree growth fails to respond commensurately to hydrologically important seasonal components of climate. This paper contrasts direct and indirect reconstruction as statistical approaches to discharge reconstruction for the Chemora River, in semi-arid northeastern Algeria, and explores indirect reconstruction as a diagnostic tool in reconstruction error analysis. We define direct reconstruction as predictions from regression of annual discharge on tree ring data, and indirect reconstruction as predictions from a four-stage process: (1) regression of precipitation on tree rings, (2) application of the regression model to get reconstructed precipitation for grid cells over the basin, (3) routing of reconstructed precipitation through a climatological water balance (WB) model, and (4) summing model runoff over cells to get the reconstructed discharge at a gage location. For comparative purposes, the potential predictors in both modeling approaches are the same principal components of tree ring width chronologies from a network of drought-sensitive sites of Pinus halepensis and Cedrus atlantica in northern Algeria. Results suggest that both modeling approaches can yield statistically significant reconstructions for the Chemora River. Greater accuracy and simplicity of the direct method are countered by conceptual physical advantages of the indirect method. The WB modeling inherent to the indirect method is useful as a diagnostic tool in error analysis of discharge reconstruction, points out the low and declining importance of snowmelt to the river discharge, and gives clues to the cause of severe underestimation of discharge in the outlier high-discharge year 1996. Results show that indirect reconstruction would benefit most in this basin from tree ring resolution of seasonal precipitation.
more »
« less
- Award ID(s):
- 1903535
- PAR ID:
- 10330595
- Date Published:
- Journal Name:
- Forests
- Volume:
- 11
- Issue:
- 9
- ISSN:
- 1999-4907
- Page Range / eLocation ID:
- 986
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Sava River Basin (SRB) includes six countries (Slovenia, Croatia, Bosnia and Herzegovina, Serbia, Albania, and Montenegro), with the Sava River (SR) being a major tributary of the Danube River. The SR originates in the mountains (European Alps) of Slovenia and, because of a recent Slovenian government initiative to increase clean, sustainable energy, multiple hydropower facilities have been constructed within the past ~20 years. Given the importance of this river system for varying demands, including hydropower (energy production), information about past (paleo) dry (drought) and wet (pluvial) periods would provide important information to water managers and planners. Recent research applying traditional regression techniques and methods developed skillful reconstructions of seasonal (April–May–June–July–August–September or AMJJAS) streamflow using tree-ring-based proxies. The current research intends to expand upon these recent research efforts and investigate developing reconstructions of seasonal (AMJJAS) precipitation applying novel Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) techniques. When comparing the reconstructed AMJJAS precipitation datasets, the AI/ML/DL techniques statistically outperformed traditional regression techniques. When comparing the SRB AMJJAS precipitation reconstruction developed in this research to the SRB AMJJAS streamflow reconstruction developed in previous research, the temporal variability of the two reconstructions compared favorably. However, pluvial magnitudes of extreme periods differed, while drought magnitudes of extreme periods were similar, confirming drought is likely better captured in tree-ring-based proxy reconstructions of hydrologic variables.more » « less
-
Abstract Recent severe droughts, extreme floods, and increasing differences between seasonal high and low flows on the Amazon River may represent a twenty-first-century increase in the amplitude of the hydrologic cycle over the Amazon Basin. These precipitation and streamflow changes may have arisen from natural ocean–atmospheric variability, deforestation within the drainage basin of the Amazon River, or anthropogenic climate change. Tree-ring reconstructions of wet-season precipitation extremes, substantiated with historical accounts of climate and river levels on the Amazon River and in northeast Brazil found in the Brazilian Digital Library, indicate that the recent river-level extremes on the Amazon may have been equaled or possibly exceeded during the preinstrumental nineteenth century. The “Forgotten Drought” of 1865 was the lowest wet-season rainfall total reconstructed with tree-rings in the eastern Amazon from 1790 to 2016 and appears to have been one of the lowest stream levels observed on the Amazon River during the historical era according to first-hand descriptions by Louis Agassiz, his Brazilian colleague João Martins da Silva Coutinho, and others. Heavy rains and flooding are described during most of the tree-ring-reconstructed wet extremes, including the complete inundation of “First Street” in Santarem, Brazil, in 1859 and the overtopping of the Bittencourt Bridge in Manaus, Brazil, in 1892. These extremes in the tree-ring estimates and historical observations indicate that recent high and low flow anomalies on the Amazon River may not have exceeded the natural variability of precipitation and streamflow during the nineteenth century. Significance StatementProxy tree-ring and historical evidence for precipitation extremes during the preinstrumental nineteenth century indicate that recent floods and droughts on the Amazon River may have not yet exceeded the range of natural hydroclimatic variability.more » « less
-
This is a two-file dataset of 37 tree-ring index chronologies calculated from ITRDB downloaded raw ring data (International Tree-Ring Data Bank at www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring) and tree rings collected by TRISH project (Collaborative Research: Fresh water and heat fluxes to the Arctic Ocean modeled with tree-ring proxies, U.S. NSF OPP award # 1917503) relevant to reconstruction of hydrologic variables for the Yenisei River basin. The data are in specific format suitable for a web-based reconstruction tool called Tree-Ring Integrated System for Hydrology (TRISH, https://trish.sr.unh.edu/) (1700-2020). This data is an extended dataset of TRISH tool built-in network of tree rings called "Yenisei ITRDB (TRISH team)" that geographically focused on the lower reaches of the Yenisei River basin.\n File 1: TreeMeta37YeniseiNorthTRISH.txt\n File 2: TreeData37YeniseiNorthTRISH.txt"]}more » « less
-
This is a two-file dataset of 111 tree-ring index chronologies calculated from ITRDB downloaded raw ring data (International Tree-Ring Data Bank at www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring) and tree rings collected by TRISH project (Collaborative Research: Fresh water and heat fluxes to the Arctic Ocean modeled with tree-ring proxies, U.S. NSF OPP award # 1917503) relevant to reconstruction of hydrologic variables for the upper reaches of Yenisei River basin. The data are in specific format suitable for a web-based reconstruction tool called Tree-Ring Integrated System for Hydrology (TRISH, https://trish.sr.unh.edu/). This data is an extended dataset of TRISH tool built-in network of tree rings called "Yenisei ITRDB (TRISH team)" that geographically focused on the upper reaches of the Yenisei River basin.\n File 1: TreeMeta111YeniseiSouthTRISH.txt\n File 2: TreeData111YeniseiSouthTRISH.txt\n READme file with the attributes of dataset."]}more » « less
An official website of the United States government

