skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1904024

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The effective mass at the Fermi level is measured in the strongly interacting two-dimensional (2D) electron system in ultra-clean SiGe/Si/SiGe quantum wells in the low-temperature limit in tilted magnetic fields. At low electron densities, the effective mass is found to be strongly enhanced and independent of the degree of spin polarization, which indicates that the mass enhancement is not related to the electrons’ spins. The observed effect turns out to be universal for silicon-based 2D electron systems, regardless of random potential, and cannot be explained by existing theories. 
    more » « less
  2. Abstract The increase in the resistivity with decreasing temperature followed by a drop by more than one order of magnitude is observed on the metallic side near the zero-magnetic-field metal-insulator transition in a strongly interacting two-dimensional electron system in ultra-clean SiGe/Si/SiGe quantum wells. We find that the temperature $$T_{\text {max}}$$ T max , at which the resistivity exhibits a maximum, is close to the renormalized Fermi temperature. However, rather than increasing along with the Fermi temperature, the value $$T_{\text {max}}$$ T max decreases appreciably for spinless electrons in spin-polarizing (parallel) magnetic fields. The observed behaviour of $$T_{\text {max}}$$ T max cannot be described by existing theories. The results indicate the spin-related origin of the effect. 
    more » « less
  3. Self-organizing neural networks are used to analyze uncorrelated white noises of different distribution types (normal, triangular, and uniform). The artificially generated noises are analyzed by clustering the measured time signal sequence samples without its preprocessing. Using this approach, we analyze, for the first time, the current noise produced by a sliding “Wigner-crystal”-like structure in the insulating phase of a 2D electron system in silicon. The possibilities of using the method for analyzing and comparing experimental data obtained by observing various effects in solid-state physics and numerical data simulated using theoretical models are discussed. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)