skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1904705

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The small Cys-rich protein metallothionein (MT) binds several metal ions in clusters within two domains. While the affinity of MT for both toxic and essential metals has been well studied, the thermodynamics of this binding has not. We have used isothermal titration calorimetry measurements to quantify the change in enthalpy (ΔH) and change in entropy (ΔS) when metal ions bind to the two ubiquitous isoforms of MT. The seven Zn2+ that bind sequentially at pH 7.4 do so in two populations with different coordination thermodynamics, an initial four that bind randomly with individual tetra-thiolate coordination and a subsequent three that bind with bridging thiolate coordination to assemble the metal clusters. The high affinity of MT for both populations is due to a very favourable binding entropy that far outweighs an unfavourable binding enthalpy. This originates from a net enthalpic penalty for Zn2+ displacement of protons from the Cys thiols and a favourable entropic contribution from the displaced protons. The thermodynamics of other metal ions binding to MT were determined by their displacement of Zn2+ from Zn7MT and subtraction of the Zn2+-binding thermodynamics. Toxic Cd2+, Pb2+, and Ag+, and essential Cu+, also bind to MT with a very favourable binding entropy but a net binding enthalpy that becomes increasingly favourable as the metal ion becomes a softer Lewis acid. These thermodynamics are the origin of the high affinity, selectivity, and domain specificity of MT for these metal ions and the molecular basis for their in vivo binding competition. 
    more » « less
  2. Metallothioneins (MTs) are a ubiquitous class of small metal-binding proteins involved in metal homeostasis and detoxification. While known for their high affinity for d 10 metal ions, there is a surprising dearth of thermodynamic data on metals binding to MTs. In this study, Zn 2+ and Cu + binding to mammalian metallothionein-3 (MT-3) were quantified at pH 7.4 by isothermal titration calorimetry (ITC). Zn 2+ binding was measured by chelation titrations of Zn 7 MT-3, while Cu + binding was measured by Zn 2+ displacement from Zn 7 MT-3 with competition from glutathione (GSH). Titrations in multiple buffers enabled a detailed analysis that yielded condition-independent values for the association constant ( K ) and the change in enthalpy (Δ H ) and entropy (Δ S ) for these metal ions binding to MT-3. Zn 2+ was also chelated from the individual α and β domains of MT-3 to quantify the thermodynamics of inter-domain interactions in metal binding. Comparative titrations of Zn 7 MT-2 with Cu + revealed that both MT isoforms have similar Cu + affinities and binding thermodynamics, indicating that Δ H and Δ S are determined primarily by the conserved Cys residues. Inductively coupled plasma mass spectrometry (ICP-MS) analysis and low temperature luminescence measurements of Cu-replete samples showed that both proteins form two Cu 4 + –thiolate clusters when Cu + displaces Zn 2+ under physiological conditions. Comparison of the Zn 2+ and Cu + binding thermodynamics reveal that enthalpically-favoured Cu + , which forms Cu 4 + –thiolate clusters, displaces the entropically-favoured Zn 2+ . These results provide a detailed thermodynamic analysis of d 10 metal binding to these thiolate-rich proteins and quantitative support for, as well as molecular insight into, the role that MT-3 plays in the neuronal chemistry of copper. 
    more » « less
  3. null (Ed.)
    The antimicrobial activity of surfactant-associated anionic peptides (SAAPs), which are isolated from the ovine pulmonary surfactant and are selective against the ovine pathogen Mannheimia haemolytica, is strongly enhanced in the presence of Zn(II) ions. Both calorimetry and ITC measurements show that the unique Asp-only peptide SAAP3 (DDDDDDD) and its analogs SAAP2 (GDDDDDD) and SAAP6 (GADDDDD) have a similar micromolar affinity for Zn(II), which binds to the N-terminal amine and Asp carboxylates in a net entropically-driven process. All three peptides also bind Cu(II) with a net entropically-driven process but with higher affinity than they bind Zn(II) and coordination that involves the N-terminal amine and deprotonated amides as the pH increases. The parent SAAP3 binds Cu(II) with the highest affinity; however, as shown with potentiometry and absorption, CD and EPR spectroscopy, Asp residues in the first and/or second positions distinguish Cu(II) binding to SAAP3 and SAAP2 from their binding to SAAP6, decreasing the Cu(II) Lewis acidity and suppressing its square planar amide coordination by two pH units. We also show that these metal ions do not stabilize a membrane disrupting ability nor do they induce the antimicrobial activity of these peptides against a panel of human pathogens. 
    more » « less