skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1904937

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The first examples of Co( ii ) mesoionic carbene complexes (CoX 2 Dipp MIC 2 ; X = Cl − , Br − , I − ) demonstrate a new electronic perturbation on tetrahedral Co( ii ) complexes. Using absorption spectroscopy and magnetometry, the consequences of the MIC's strong σ-donating/minimal π-accepting nature are analyzed and shown to be further tunable by the nature of the coordinated halide. 
    more » « less
  2. As the ability to generate magnetic anisotropy in molecular materials continues to hit new milestones, concerted effort has shifted towards understanding, and potentially controlling, the mechanisms of magnetic relaxation across a large time and temperature space. Slow magnetic relaxation in molecules is highly temperature-, field-, and environment-dependent with the relevant timescale easily traversing ten orders of magnitude for current single-molecule magnets (SMM). The prospect of synthetic control over the nature of (and transition probabilities between) magnetic states make unraveling the underlying mechanisms an important yet daunting challenge. Currently, instrumental considerations dictate that the characteristic relaxation time, τ , is determined by separate methods depending on the timescale of interest. Static and dynamic probe fields are used for long- and short-timescales, respectively. Each method captures a distinct, non-overlapping time range, and experimental differences lead to the possibility of fundamentally different meanings for τ being plotted and fitted globally as a function of temperature. Herein, we present a method to generate long-timescale waveforms with standard vibrating sample magnetometry (VSM) instrumentation, allowing extension of alternating current (AC) susceptometry to SMMs and other superparamagnets with arbitrarily long relaxation time. We fit these data to a generalized Debye model and present a comparison to results obtained from direct current (DC) magnetization decay. 
    more » « less