skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A method for extending AC susceptometry to long-timescale magnetic relaxation
As the ability to generate magnetic anisotropy in molecular materials continues to hit new milestones, concerted effort has shifted towards understanding, and potentially controlling, the mechanisms of magnetic relaxation across a large time and temperature space. Slow magnetic relaxation in molecules is highly temperature-, field-, and environment-dependent with the relevant timescale easily traversing ten orders of magnitude for current single-molecule magnets (SMM). The prospect of synthetic control over the nature of (and transition probabilities between) magnetic states make unraveling the underlying mechanisms an important yet daunting challenge. Currently, instrumental considerations dictate that the characteristic relaxation time, τ , is determined by separate methods depending on the timescale of interest. Static and dynamic probe fields are used for long- and short-timescales, respectively. Each method captures a distinct, non-overlapping time range, and experimental differences lead to the possibility of fundamentally different meanings for τ being plotted and fitted globally as a function of temperature. Herein, we present a method to generate long-timescale waveforms with standard vibrating sample magnetometry (VSM) instrumentation, allowing extension of alternating current (AC) susceptometry to SMMs and other superparamagnets with arbitrarily long relaxation time. We fit these data to a generalized Debye model and present a comparison to results obtained from direct current (DC) magnetization decay.  more » « less
Award ID(s):
1904937
PAR ID:
10161499
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
21
Issue:
40
ISSN:
1463-9076
Page Range / eLocation ID:
22302 to 22307
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    SUMMARY Upon cooling, most rocks acquire a thermoremanent magnetization (TRM); the cooling rate at which this happens not only affects palaeointensity estimates, but also their unblocking temperatures in stepwise thermal demagnetization experiments, which is important, for example, to estimate volcanic emplacement temperatures. Traditional single-domain (SD) theory of magnetic remanence relates relaxation times to blocking temperatures— the blocking temperature is the temperature at which the relaxation time becomes shorter than the experimental timescale—and therefore strictly only applies to remanence acquisition mechanisms at constant temperatures (i.e. viscous remanent magnetizations, VRMs). A theoretical framework to relate (constant) blocking temperatures to (time-varying) cooling rates exists, but this theory has very limited experimental verification—partly due to the difficulty of accurately knowing the cooling rates of geological materials. Here we present an experimental test of this ‘cooling rate effect on blocking temperatures’ through a series of demagnetization experiments of laboratory-induced TRMs with controlled cooling rates. The tested cooling rates span about 1 order of magnitude and are made possible through (1) extremely accurate demagnetization experiments using a low-temperature magnetic properties measurement system (MPMS) and (2) the use of a ‘1-step-only’ stepwise thermal demagnetization protocol where the relaxation process is measured over time. In this way the relaxation time corresponding to the blocking temperature is measured, which can be done to much higher accuracy than measuring the blocking temperature directly as done in traditional stepwise thermal demagnetization experiments. Our experiments confirm that the cooling rate relationship holds to high accuracy for ideal magnetic recorders, as shown for a synthetic weakly interacting SD magnetoferritin sample. A SD-dominated low-Ti titanomagnetite Tiva Canyon Tuff sample, however, showed that natural samples are unlikely to be sufficiently ‘ideal’ to meet the theoretical predictions to high accuracy—the experimental data agrees only approximately with the theoretical predictions, which may potentially affect blocking temperature estimates in stepwise thermal demagnetization experiments. Moreover, we find a strongly enhanced cooling rate effect on palaeointensities for even marginally non-ideal samples (up to 43 per cent increase in pTRM for a halving of the cooling rate). 
    more » « less
  2. Abstract Crustal magma chambers can grow to be hundreds to thousands of cubic kilometers, potentially feeding catastrophic caldera‐forming eruptions. Smaller volume chambers are expected to erupt frequently and freeze quickly; a major outstanding question is how magma chambers ever grow to the sizes required to sustain the largest eruptions on Earth. We use a thermo‐mechanical model to investigate the primary factors that govern the extrusive:intrusive ratio in a chamber, and how this relates to eruption frequency, eruption size, and long‐term chamber growth. The model consists of three fundamental timescales: the magma injection timescaleτin, the cooling timescaleτcool, and the timescale for viscous relaxation of the crustτrelax. We estimate these timescales using geologic and geophysical data from four volcanoes (Laguna del Maule, Campi Flegrei, Santorini, and Aso) to compare them with the model. In each of these systems,τinis much shorter thanτcooland slightly shorter thanτrelax, conditions that in the model are associated with efficient chamber growth and simultaneous eruption. In addition, the model suggests that the magma chambers underlying these volcanoes are growing at rates between ~10−4and 10−2 km3/year, speeding up over time as the chamber volume increases. We find scaling relationships for eruption frequency and size that suggest that as chambers grow and volatiles exsolve, eruption frequency decreases but eruption size increases. These scaling relationships provide a good match to the eruptive history from the natural systems, suggesting that the relationships can be used to constrain chamber growth rates and volatile saturation state from the eruptive history alone. 
    more » « less
  3. Abstract Designing new quantum materials with long-lived electron spin states urgently requires a general theoretical formalism and computational technique to reliably predict intrinsic spin relaxation times. We present a new, accurate and universal first-principles methodology based on Lindbladian dynamics of density matrices to calculate spin-phonon relaxation time of solids with arbitrary spin mixing and crystal symmetry. This method describes contributions of Elliott-Yafet and D’yakonov-Perel’ mechanisms to spin relaxation for systems with and without inversion symmetry on an equal footing. We show that intrinsic spin and momentum relaxation times both decrease with increasing temperature; however, for the D’yakonov-Perel’ mechanism, spin relaxation time varies inversely with extrinsic scattering time. We predict large anisotropy of spin lifetime in transition metal dichalcogenides. The excellent agreement with experiments for a broad range of materials underscores the predictive capability of our method for properties critical to quantum information science. 
    more » « less
  4. null (Ed.)
    The rapid equilibrium fluctuations of water molecules are intimately connected to the rheological response; molecular motions resetting the local structure and stresses seen as flow and volume changes. In the case of water or hydrogen bonding liquids generally, the relationship is a non-trivial consideration due to strong directional interactions complicating theoretical models and necessitating clear observation of the timescale and nautre of the associated equilibrium motions. Recent work has illustrated a coincidence of timescales for short range sub-picosecond motions and the implied timescale for the shear viscosity response in liquid water. Here, neutron and light scattering methods are used to experimentally illustrate the timescale of bulk viscosity and provide a description of the associated molecular relaxation. Brillouin scattering has been used to establish the timescale of bulk viscosity; and borrowing the Maxwell approach, the ratio of the bulk viscosity, ζ , to the bulk modulus, K , yields a relaxation time, τ B , which emerges on the order of 1–2 ps in the 280 K to 303 K temperature range. Inelastic neutron scattering is subsequently used to describe the motions of water and heavy water at the molecular scale, providing both coherent and incoherent scattering data. A rotational (alternatively described as localized) motion of water protons on the 1–2 ps timescale is apparent in the incoherent scattering spectra of water, while the coherent spectra from D 2 O on the length scale of the first sharp diffraction peak, describing the microscopic density fluctuations of water, confirms the relaxation of water structure at a comparable timescale of 1–2 ps. The coincidence of these three timescales provides a mechanistic description of the bulk viscous response, with the local structure resetting due to rotational/localized motions on the order of 1–2 ps, approximately three times slower than the relaxations associated with shear viscosity. In this way we show that the shear viscous response is most closely associated with changes in water network connectivity, while the bulk viscous response is associated with local density fluctuations. 
    more » « less
  5. When a moderately intense, few-picosecond-long laser pulse ionizes gas to produce an underdense plasma column, a linear relativistic plasma wave or wake can be excited by the self-modulation instability that may prove useful for multi-bunch acceleration of externally injected electrons or positrons to high energies in a short distance. At the same time, due to the anisotropic temperature distributions of the ionized plasma electrons, the Weibel instability can self-generate magnetic fields throughout such a plasma on a few picoseconds timescale that can persist even longer than the lifetime of the wake. In the present paper, we first show using simulations that both these effects do indeed co-exist in space and time in the plasma. Using our simulations, we make preliminary estimates of the contribution to the transverse emittance growth of an externally injected beam due to the Weibel magnetic fields in a few-millimeter-long plasma. We then present the results of an experiment that has allowed us to measure the spatiotemporal evolution of the magnetic fields using an ultrashort relativistic electron probe beam. Both the topology and the lifetime of the Weibel instability induced magnetic fields in the experiment are in reasonable agreement with the fields induced by the Weibel instability in the simulations. 
    more » « less