skip to main content


Search for: All records

Award ID contains: 1904998

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Four extensively fluorinated tetraphenylethylenes (TPE) and one extensively fluorinated triphenylethylene have been synthesized using combinations of copper‐catalyzed C−H functionalization reactions and Stille coupling reactions. Surprisingly, in contrast to the parent TPE, these compounds show little to no aggregation‐induced emission (AIE). Instead, photocyclization into fluorinated phenanthrene products occurs. Effects of solvent and oxygen on the yield and selectivity of this photocyclization have been examined.

     
    more » « less
  2. Abstract

    A porous molecular crystal (PMC) assembled by macrocyclic cyclotetrabenzoin acetate is an efficient adsorbent for CO2separations. The 7.1×7.1 Å square pore of PMC and its ester C=O groups play important roles in improving its affinity for CO2molecules. The benzene walls of macrocycle engage in an apparent [π⋅⋅⋅π] interaction with the molecule of CO2at low pressure. In addition, the polar carbonyl groups pointing inward the square channels reduce the size of aperture to a 5.0×5.0 Å square, which offers kinetic selectivity for CO2capture. The PMC features water tolerance and high structural stability under vacuum and various gas adsorption conditions, which are rare among intrinsically porous organic molecules. Most importantly, the moderate adsorbate‐adsorbent interaction allows the PMC to be readily regenerated, and therefore applied to pressure swing adsorption processes. The eluted N2and CH4are obtained with over 99.9 % and 99.8 % purity, respectively, and the separation performance is stable for 30 cycles. Coupled with its easy synthesis, cyclotetrabenzoin acetate is a promising adsorbent for CO2separations from flue and natural gases.

     
    more » « less
  3. Free, publicly-accessible full text available September 8, 2024
  4. Free, publicly-accessible full text available May 1, 2024
  5. null (Ed.)
    Porous organic polymers (POPs) incorporating macrocyclic units have been investigated in recent years in an effort to transfer macrocycles' intrinsic host–guest properties onto the porous networks to achieve complex separations. In this regard, highly interesting building blocks are presented by the family of cyclotetrabenzoin macrocycles with rigid, well-defined, electron-deficient cavities. This macrocycle shows high affinity towards linear guest molecules such as carbon dioxide, thus offering an ideal building block for the synthesis of CO2-philic POPs. Herein, we report the synthesis of a POP through the condensation reaction between cyclotetrabenzil and 1,2,4,5-tetraaminobenzene under ionothermal conditions using the eutectic zinc chloride/sodium chloride/potassium chloride salt mixture at 250 °C. Notably, following the condensation reaction, the macrocycle favors three-dimensional (3D) growth rather than a two-dimensional one while retaining the cavity. The resulting polymer, named 3D-mPOP, showed a highly microporous structure with a BET surface area of 1142 m2 g−1 and a high carbon dioxide affinity with a binding enthalpy of 39 kJ mol−1. Moreover, 3D-mPOP showed very high selectivity for carbon dioxide in carbon dioxide/methane and carbon dioxide/nitrogen mixtures. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)