A series of N-doped porous carbons with different textural properties and N contents was prepared from a mixture of algae and glucose and their capability for the separation of CO 2 /CH 4 , C 2 H 6 /CH 4 , and CO 2 /H 2 binary mixtures under different conditions (bulk pressure, mixture composition, and temperature) were subsequently assessed in great detail. It was observed that the gas (C 2 H 6 , CO 2 , CH 4 , and H 2 ) adsorption capacity at different pressure regions was primarily governed by different adsorbent parameters (N level, narrow micropore volume, and BET specific surface area). More interestingly, it was found that N-doping can selectively enhance the heats of adsorption of C 2 H 6 and CO 2 , while it had a negligible effect on those of CH 4 and H 2 . The adsorption equilibrium selectivities for separating C 2 H 6 /CH 4 , CO 2 /CH 4 , and CO 2 /H 2 gas mixture pairs on the porous carbons were predicted using the ideal adsorbed solution theory (IAST) based on pure-component adsorption isotherms. In particular, sample NAHA-1 exhibited by far the best performance (in terms of gas adsorption capacity and selectivity) reported for porous carbons for the separation of these three binary mixtures. More significantly, NAHA-1 carbon outperforms many of its counterparts ( e.g. MOFs and zeolites), emphasizing the important role of carbonaceous adsorbents in gas purification and separation.
more »
« less
Cyclotetrabenzoin Acetate: A Macrocyclic Porous Molecular Crystal for CO 2 Separations by Pressure Swing Adsorption**
Abstract A porous molecular crystal (PMC) assembled by macrocyclic cyclotetrabenzoin acetate is an efficient adsorbent for CO2separations. The 7.1×7.1 Å square pore of PMC and its ester C=O groups play important roles in improving its affinity for CO2molecules. The benzene walls of macrocycle engage in an apparent [π⋅⋅⋅π] interaction with the molecule of CO2at low pressure. In addition, the polar carbonyl groups pointing inward the square channels reduce the size of aperture to a 5.0×5.0 Å square, which offers kinetic selectivity for CO2capture. The PMC features water tolerance and high structural stability under vacuum and various gas adsorption conditions, which are rare among intrinsically porous organic molecules. Most importantly, the moderate adsorbate‐adsorbent interaction allows the PMC to be readily regenerated, and therefore applied to pressure swing adsorption processes. The eluted N2and CH4are obtained with over 99.9 % and 99.8 % purity, respectively, and the separation performance is stable for 30 cycles. Coupled with its easy synthesis, cyclotetrabenzoin acetate is a promising adsorbent for CO2separations from flue and natural gases.
more »
« less
- Award ID(s):
- 1904998
- PAR ID:
- 10226410
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 60
- Issue:
- 27
- ISSN:
- 1433-7851
- Format(s):
- Medium: X Size: p. 14931-14937
- Size(s):
- p. 14931-14937
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Cyclotetrabenzil, a shape‐persistent macrocyclic octaketone, is found to undergo eightfold condensation with hydroxylamine hydrochloride to yield its octaoxime. Subsequent acetylation of this macrocyclic oxime afforded the corresponding octaoxime acetate. Single‐crystal X‐ray diffraction reveals that both new derivatives assemble into nanotubular structures. However, their packing differs: the oxime forms hydrogen‐bonded tubes that bundle via included dimethyl sulfoxide (DMSO) molecules, whereas the acetate—lacking hydrogen‐bond donors—forms more loosely packed tubes with molecules tilted ∼54.5° relative to the tube axis. Gas sorption studies (CO2, C2, and C3hydrocarbons) show that cyclotetrabenzil is nonporous, whereas the oxime and acetate exhibit modest microporosity with BET surface areas of ∼200 m2g−1. Both derivatives display preferential uptake of propyne over propene and propane, and the acetate also adsorbs more acetylene than ethylene or ethane. Nonetheless, these capacities and selectivities are suboptimal for dynamic separation of C2and C3hydrocarbons. This study illustrates how oxime functionalization can modulate macrocyclic assembly and gas uptake behavior, providing insights for the design of future porous organic macrocycles.more » « less
-
Metal–organic frameworks bearing coordinatively unsaturated Mg( ii ) sites are promising materials for gas storage, chemical separations, and drug delivery due to their low molecular weights and lack of toxicity. However, there remains a limited number of such MOFs reported in the literature. Herein, we investigate the gas sorption properties of the understudied framework Mg 2 ( m -dobdc) (dobdc 4− = 4,6-dioxido-1,3-benzenedicarboxylate) synthesized under both solvothermal and mechanochemical conditions. Both materials are found to be permanently porous, as confirmed by 77 K N 2 adsorption measurements. In particular, Mg 2 ( m -dobdc) synthesized under mechanochemical conditions using exogenous organic base displays one of the highest capacities reported to date (6.14 mmol g −1 ) for CO 2 capture in a porous solid under simulated coal flue gas conditions (150 mbar, 40 °C). As such, mechanochemically synthesized Mg 2 ( m -dobdc) represents a promising new framework for applications requiring high gas adsorption capacities in a porous solid.more » « less
-
The title molecule, C22H6F8, crystallizes in the monoclinic space groupP21/cwith two unique molecules in the asymmetric unit andZ= 8. Each molecule features a short intramolecularsp2-C—H...F hydrogen bond with H...F separations at 2.363 (14) and 2.270 (14) Å, corresponding to 91 and 87.5% of the sum of the van der Waals radii, and C—H...F angles of 158.3 (14) and 166.8 (14)°, respectively. Each molecule also forms an intermolecular bifurcated CH...(F)2interaction with H...F distances ranging from 2.500 (16) to 2.597 (17) Å.more » « less
-
More than 90% of the world’s hydrogen (H2) is produced from fossil fuel sources, which requires energy-intensive separation and purification to produce high-purity H2fuel and to capture the carbon dioxide (CO2) by-product. While membranes can decarbonize H2/CO2separation, their moderate H2/CO2selectivity requires secondary H2purification by pressure swing adsorption. Here, we report hyperselective carbon molecular sieve hollow fiber membranes showing H2/CO2selectivity exceeding 7000 under mixture permeation at 150°C, which is almost 30 times higher than the most selective nonmetallic membrane reported in the literature. The membrane is able to maintain an ultrahigh H2/CO2selectivity over 1400 under mixture permeation at 400°C. Pore structure characterization suggests that highly refined ultramicropores are responsible for effectively discriminating the closely sized H2and CO2molecules in the hyperselective carbon molecular sieve membrane. Modeling shows that the unprecedented H2/CO2selectivity will potentially allow one-step enrichment of fuel-grade H2from shifted syngas for decarbonized H2production.more » « less
An official website of the United States government
