skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1905172

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Atmospheric aerosols exert a significant but highly uncertain effect on the global climate, and roughly half of these particles originate as small clusters formed by collisions between atmospheric trace vapors. These particles typically consist of acids, bases, and water, stabilized by salt bridge formation and a network of strong hydrogen bonds. We review spectroscopic studies of this process, focusing on the clusters likely to be involved in the first steps of particle formation and the intermolecular interactions governing their stability. These studies typically focus on determining structure and stability and have shown that acid-base chemistry in the cluster may violate chemical intuition derived from solution-phase behavior and that hydration of these clusters is likely to be complex to describe. We also suggest fruitful areas for extension of these studies and alternative spectroscopic techniques that have not yet been applied to this problem. 
    more » « less