Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The synthesis of metal monolayer‐protected clusters (MPCs) is still not well understood. It was recently shown that the mechanism of MPC formation involves sequential growth, wherein small MPCs form first and then grow into progressively larger sizes. The sequential growth model does not entirely explain all experimental observations, however. For example, the evolution of MPC product sizes is found to be a non‐monotonic function of reaction kinetics, whereas the sequential growth model predicts monotonic behavior. Size evolution of MPCs is studied during synthetic reactions for a wide range of kinetics and it is found that all syntheses began with the sequential growth of MPCs but also found that growth transitioned to degradation if reduction kinetics are fast enough to give way to ambient oxidation. It is identified that MPCs can degrade via oxidation during syntheses and in a manner that is opposite to sequential growth, namely by forming smaller known MPC species from larger MPC species. This sequential degradation process therefore played an important role in determining final MPC products for reactions with fast reduction kinetics. Together, complementary oxidative and reductive processes provide a more complete description of MPC synthesis as well as new tools for controlling metal MPC synthesis.more » « less
-
Abstract Silver monolayer‐protected clusters (MPCs) are an important new class of small metal nanoparticles with discrete sizes and unique properties that are eminently tunable; however, a fundamental understanding of the mechanisms of MPC formation is still lacking. Here, the basic mechanism by which silver‐glutathione MPCs form is established by using real‐time in situ optical measurements and ex situ solution‐phase analyses to track MPC populations in the reaction mixture. These measurements identify that MPCs grow systematically, increasing in size sequentially as they transform from one known species to another, in contrast to existing models. In the new sequential growth model of MPC formation, the relative stability of each species in the series results in thermodynamic preferences for certain species as well as kinetic barriers to transformations between stable sizes. This model is shown to correctly predict the outcome of silver MPC synthetic reactions. Simple analytic expressions and simulations of rate equations are used to further validate the model and study its nature. The sequential growth model provides insights into how reactions may be directed, based on the interplay between relative MPC stabilities and reaction kinetics, providing tools for the synthesis of particular MPCs in high yield.more » « less
-
Around 5% to 10% of hospitalized patients develop a hospital-acquired infection (HAI). Scrubs are a potential vector of HAIs. To compare the antimicrobial characteristics of scrubs with and without an antimicrobial fabric coating, as tested in the laboratory (in vitro) and hospital (in vivo) environments. Two protocols were conducted to address the purpose. The in vitro protocol was a laboratory study that involved observing the microbe growth after inoculating coated and uncoated scrub fabric swatches with S. aureus and then processing them in moist and dry environments. The in vivo protocol was a clinical trial that measured microbe growth on coated and uncoated scrubs prior to and following nursing staff completing a 12-hr shift on an acute care unit, as measured by colony forming units (CFUs). For high-humidity environments, the in vitro study indicated that swatches treated with an antimicrobial coating exhibited minimal microbe growth, while untreated swatches exhibited significant microbe growth. For low-humidity environments, coated and uncoated swatches were all found to exhibit minimal microbe growth. In the in vivo study, the CFUs increased on scrubs worn by nurses over a 12-hr shift with no significant difference in CFUs for coated and uncoated scrubs. For bacteria in a warm and moist environment, the antimicrobial coating was found to be important for inhibiting growth. For bacteria in a warm and dry environment, both coated and uncoated fabrics performed similarly as measured at 24 hr, with minimal bacterial growth observed. In a hospital environment, microbe growth was observed, but no significant difference was detected when comparing coated and uncoated scrubs. This may have been due to the short time between exposure and culturing the scrubs for analysis immediately at the end of the shift not allowing for enough time to kill or inhibit growth. Contact time between the bacteria and scrub fabric (coated or uncoated) in the in vivo study more directly correlated with the 0-hr observations for the in vitro study, suggesting that the ineffectiveness of the treated scrubs in the clinical results may be due in part to short residence times before collection.more » « less
-
Atomically precise nanoclusters (NCs) are of great interest due to their well-defined structures and molecule-like properties. Understanding their structure–property relationship is an important task because it can help tailor their structures to achieve specific desired properties. In this study, the temperature-dependent bonding properties of Ag44(SR)30 have been revealed by extended X-ray absorption fine structure (EXAFS) with a new structure analysis method, which includes two Ag–S and two Ag–Ag fitting shells. It has been proven that the EXAFS fitting quality can be improved significantly compared with the conventional method. New insights into Ag–S bondings were discovered based on the fitting results obtained from the new method. It allows us to observe two different bonding properties within the Ag–S motifs, which cannot be discovered by using the conventional method. Additionally, the metal core of Ag44(SR)30 exhibits uncommon thermal behavior, which could be connected to the absence of the center atom in the icosahedral core. Our results demonstrate that the new structure analysis method can provide a more reliable comparison of NCs structural changes than the conventional method, and it could be applicable to other NCs. The revealed temperature-dependent bonding properties can provide insights into the structure–property relationship of Ag44(SR)30, which can help design new NCs materials with tailored properties.more » « less
-
Recently, silver nanoclusters have garnered considerable attention after the high-yield synthesis and crystallization of a thiolate-protected silver nanocluster, Na4Ag44(SR)30 (SR, protecting thiolate ligand). One intriguing feature of Na4Ag44(SR)30 is its outstanding stability and resistance to chemical reactions, in striking difference from other silver nanostructures whose susceptibility to oxidation (tarnishing) has been commonly observed and thus limits their applications in nanotechnology. Herein, we report the mechanism on the ultrahigh stability of Na4Ag44(SR)30 by uncovering how coordinating solvents interact with the Na4Ag44(SR)30 nanocluster at the atomic scale. Through synchrotron X-ray experiments and theoretical calculations, it was found that strongly coordinating aprotic solvents interact with surface Ag atoms, particularly between ligand bundles, which compresses the Ag core and relaxes surface metal–ligand interactions. Furthermore, water was used as a cosolvent to demonstrate that semiaqueous conditions play an important role in protecting exposed surface regions and can further influence the local structure of the silver nanocluster itself. Notably, under semiaqueous conditions, aprotic coordinating solvent molecules preferentially remain on the metal surface while water molecules interact with ligands, and ligand bundling persisted across the varied solvation conditions. This work offers an atomic level mechanism on the ultrahigh stability of the Na4Ag44(SR)30 nanoclusters from the nanocluster-coordinating solvent interaction perspective, and implies that nanocluster-solvent interactions should be carefully considered moving forward for silver nanoclusters, as they can influence the electronic/chemical properties of the nanocluster as well as the surface accessibility of small molecules for potential catalytic and biomedical applications.more » « less
An official website of the United States government
