skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In Vitro and In Vivo Testing of Microbe Growth on Antimicrobial Nursing Scrubs
Around 5% to 10% of hospitalized patients develop a hospital-acquired infection (HAI). Scrubs are a potential vector of HAIs. To compare the antimicrobial characteristics of scrubs with and without an antimicrobial fabric coating, as tested in the laboratory (in vitro) and hospital (in vivo) environments. Two protocols were conducted to address the purpose. The in vitro protocol was a laboratory study that involved observing the microbe growth after inoculating coated and uncoated scrub fabric swatches with S. aureus and then processing them in moist and dry environments. The in vivo protocol was a clinical trial that measured microbe growth on coated and uncoated scrubs prior to and following nursing staff completing a 12-hr shift on an acute care unit, as measured by colony forming units (CFUs). For high-humidity environments, the in vitro study indicated that swatches treated with an antimicrobial coating exhibited minimal microbe growth, while untreated swatches exhibited significant microbe growth. For low-humidity environments, coated and uncoated swatches were all found to exhibit minimal microbe growth. In the in vivo study, the CFUs increased on scrubs worn by nurses over a 12-hr shift with no significant difference in CFUs for coated and uncoated scrubs. For bacteria in a warm and moist environment, the antimicrobial coating was found to be important for inhibiting growth. For bacteria in a warm and dry environment, both coated and uncoated fabrics performed similarly as measured at 24 hr, with minimal bacterial growth observed. In a hospital environment, microbe growth was observed, but no significant difference was detected when comparing coated and uncoated scrubs. This may have been due to the short time between exposure and culturing the scrubs for analysis immediately at the end of the shift not allowing for enough time to kill or inhibit growth. Contact time between the bacteria and scrub fabric (coated or uncoated) in the in vivo study more directly correlated with the 0-hr observations for the in vitro study, suggesting that the ineffectiveness of the treated scrubs in the clinical results may be due in part to short residence times before collection.  more » « less
Award ID(s):
1905262
PAR ID:
10507794
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Sage
Date Published:
Journal Name:
Clinical Nursing Research
Volume:
33
Issue:
4
ISSN:
1054-7738
Page Range / eLocation ID:
253 to 261
Subject(s) / Keyword(s):
Antimicrobial Scrubs silver fabric coating
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We synthesized novel TiO2/ZnO-phosphate (TP/ZP) and polymethyl hydrogen siloxane (PMHS)-based two-layer hydrophobic coatings with potential antimicrobial properties tuned for application on steel substrates. The mathematical method of topological data analysis was applied to surface roughness data. Wetting characterizations showed stable hydrophobic behavior of the two-layer coated samples. Through tribological characterization, we compared the friction behavior of uncoated steel samples and steel samples coated with different coating materials. The coefficient of friction of uncoated base materials (ranging from 0.221 to 0.269) and the two-layer hydrophobic coatings (ranging from 0.234 to 0.273) indicated that the coatings confer hydrophobic properties to the substrates without a notable change in the friction behavior. We observed the correlations between the wetting and friction behaviors and the average roughness of the coated samples. Analysis of the micrographs of the scratched surfaces revealed preliminary information about the durability and abrasion resistance of the coatings. 
    more » « less
  2. Abstract Decades of research into the topic of oral nanoparticle (NP) delivery has still not provided a clear consensus regarding which properties produce an effective oral drug delivery system. The surface properties—charge and bioadhesiveness—as well as in vitro and in vivo correlation seem to generate the greatest number of disagreements within the field. Herein, a mechanism underlying the in vivo behavior of NPs is proposed, which bridges the gaps between these disagreements. The mechanism relies on the idea of biocoating—the coating of NPs with mucus—which alters their surface properties, and ultimately their systemic uptake. Utilizing this mechanism, several coated NPs are tested in vitro, ex vivo, and in vivo, and biocoating is found to affect NPs size, zeta‐potential, mucosal diffusion coefficient, the extent of aggregation, and in vivo/in vitro/ex vivo correlation. Based on these results, low molecular weight polylactic acid exhibits a 21‐fold increase in mucosal diffusion coefficient after precoating as compared to uncoated particles, as well as 20% less aggregation, and about 30% uptake to the blood in vivo. These discoveries suggest that biocoating reduces negative NP charge which results in an enhanced mucosal diffusion rate, increased gastrointestinal retention time, and high systemic uptake. 
    more » « less
  3. Remick, Daniel (Ed.)
    ABSTRACT Infection of wounds delays healing, increases treatment costs, and leads to major complications. Current methods to manage such infections include antibiotic ointments and antimicrobial wound dressings, both of which have significant drawbacks, including frequent reapplication and contribution to antimicrobial resistance. In this work, we developed wound dressings fabricated with a medical-grade polyurethane coating composed of natural plant secondary metabolites, cinnamaldehyde, and alpha-terpineol. Our wound dressings are easy to change and do not adhere to the wound bed. They kill gram-positive and -negative microbes in infected wounds due to the Food and Drug Administration–approved for human consumption components. The wound dressings were fabricated by dip coating. Antimicrobial efficacy was determined by quantifying the bacteria colonies after a 24 h of immersion. Wound healing and bacterial reduction were assessed in anin vivofull-thickness porcine burn model. Our antimicrobial wound dressings showed a > 5-log reduction (99.999%) of different gram-positive and gram-negative bacteria, while maintaining absorbency. In thein vivoporcine burn model, our wound dressings were superior to bacitracin in decreasing bacterial burden during daily changes, without interfering with wound healing. Additionally, the dressings had a significantly lower adhesion to the wound bed. Our antimicrobial wound dressings reduced the burden of clinically relevant bacteria more than commercial antimicrobial wound dressings. In anin vivoinfected burn wound model, our coatings performed as well or better than bacitracin. We anticipate that our wound dressings would be useful for the treatment of various types of acute and chronic wounds. 
    more » « less
  4. Magnesium (Mg) alloys are being investigated as a biodegradable metallic biomaterial because of their mechanical property profile, which is similar to the human bone. However, implants based on Mg alloys are corroded quickly in the body before the bone fracture is fully healed. Therefore, we aimed to reduce the corrosion rate of Mg using a double protective layer. We used a magnesium-aluminum-zinc alloy (AZ91) and treated its surface with micro-arc oxidation (MAO) technique to first form an intermediate layer. Next, a bioceramic nanocomposite composed of diopside, bredigite, and fluoridated hydroxyapatite (FHA) was coated on the surface of MAO treated AZ91 using the electrophoretic deposition (EPD) technique. Our in vivo results showed a significant enhancement in the bioactivity of the nanocomposite coated AZ91 implant compared to the uncoated control implant. Implantation of the uncoated AZ91 caused a significant release of hydrogen bubbles around the implant, which was reduced when the nanocomposite coated implants were used. Using histology, this reduction in the corrosion rate of the coated implants resulted in an improved new bone formation and reduced inflammation in the interface of the implants and the surrounding tissue. Hence, our strategy using a MAO/EPD of a bioceramic nanocomposite coating (i.e., diopside-bredigite-FHA) can significantly reduce the corrosion rate and improve the bioactivity of the biodegradable AZ91 Mg implant. 
    more » « less
  5. Hydrophobic surfaces provide special characteristics for biomedical applications ranging from tunable protein adsorption, cellular interactions, and hemocompatibility to antibacterial coatings. In this research, we biomimic the hair-like micro-whisker structures of magnolia leaf using a synthetic polymeric formulation. Optical and scanning electron microscopy images revealed the presence of micro-whiskers resulting in higher water contact angles. The top layer of the magnolia leaf had a contact angle of 50º as compared to the hydrophobic bottom layer at 98º. A synthetic polymeric formulation was coated on different materials to study its effect on hydrophobicity. The coating was replicated (n=3) on each of the materials used such as glass, polymer, fabric, wood, and stainless steel. A surface tensiometer was used to measure the transition from hydrophilic to hydrophobic interactions between water and the substrate materials. Contact angle measurements revealed an increase in hydrophobicity for all the materials from their original uncoated surface. Glass displayed the highest increase in contact angle from 37º to 90º. Phase analysis of the coated region was performed to characterize the surface exposure of glass substrate to the synthetic polymeric formulation. An increase in the coated region showed a significant increase in contact angle from 50º to 95º. This research lays the foundation to develop and understand hydrophobic coatings for several biomedical applications including non-fouling implant surfaces, lab-on-chip devices, and other diagnostic tools. 
    more » « less