skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1905288

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 10, 2026
  2. It is shown that laminar vortex rings can be generated by impulsive body forces having particular spatial and temporal characteristics. The method produces vortex rings in a fluid initially at rest, and once generated, the flow field automatically satisfies the boundary conditions and is divergence-free. Numerical simulations and analytical models show that the strength of these rings can be accurately predicted by considering diffusion alone, despite the nonlinear nature of the generation process. A particularly simple model, which approximates the source of vorticity within vertical slabs, is proposed. This model predicts the ring circulation almost as accurately as a model that uses the exact geometry of the source of vorticity. It is found that when the duration of the force is less than a timescale based on the force radius and fluid viscosity, the ring circulation can be predicted accurately using an inviscid model. 
    more » « less
  3. Bubble trajectories in the presence of a decaying Lamb–Oseen vortex are calculated using a modified Maxey–Riley equation. Some bubbles are shown to get trapped within the vortex in quasi-equilibrium states. All the trapped bubbles exit the vortex at a time that is only a function of the Galilei number and the vortex Reynolds number. The set of initial bubble locations that lead to entrapment is numerically determined to show the capturing potential of a single vortex. The results provide insight into the likelihood of bubble entrapment within vortical structures in turbulent flows. 
    more » « less