skip to main content


Search for: All records

Award ID contains: 1905397

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The future of modern optoelectronics and spintronic devices relies on our ability to control the spin and charge degrees of freedom at ultrafast timescales. Rashba spin-split quantum well states, 2D states that develop at the surface of strong spin-orbit coupling materials, are ideal given the tunability of their energy and spin states. So far, however, most studies have only demonstrated such control in a static way. In this study, we demonstrate control of the spin and energy degrees of freedom of surface quantum well states on Bi2Se3at picosecond timescales. By means of a focused laser pulse, we modulate the band-bending, producing picosecond time-varying electric fields at the material’s surface, thereby reversibly modulating the quantum well spectrum and Rashba effect. Moreover, we uncover a dynamic quasi-Fermi level, dependent on the Lifshitz transition of the second quantum well band bottom. These results open a pathway for light-driven spintronic devices with ultrafast switching of electronic phases, and offer the interesting prospect to extend this ultrafast photo-gating technique to a broader host of 2D materials.

     
    more » « less
  2. Metal-metal bonding interactions can engender outstanding magnetic properties in bulk materials and molecules, and examples abound for the transition metals. Extending this paradigm to the lanthanides, herein we report mixed-valence dilanthanide complexes (Cp iPr5 ) 2 Ln 2 I 3 (Ln is Gd, Tb, or Dy; Cp i Pr5 , pentaisopropylcyclopentadienyl), which feature a singly occupied lanthanide-lanthanide σ-bonding orbital of 5 d z 2 parentage, as determined by structural, spectroscopic, and computational analyses. Valence delocalization, wherein the d electron is equally shared by the two lanthanide centers, imparts strong parallel alignment of the σ-bonding and f electrons on both lanthanides according to Hund’s rules. The combination of a well-isolated high-spin ground state and large magnetic anisotropy in (Cp iPr5 ) 2 Dy 2 I 3 gives rise to an enormous coercive magnetic field with a lower bound of 14 tesla at temperatures as high as 60 kelvin. 
    more » « less
  3. null (Ed.)