skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1905401

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Abstract Organic light-emitting diode (OLED) displays are now poised to be the dominant mobile display technology and are at the heart of the most attractive televisions and electronic tablets on the market today. But this begs the question: what is the next big opportunity that will be addressed by organic electronics? We attempt to answer this question based on the unique attributes of organic electronic devices: their efficient optical absorption and emission properties, their ability to be deposited on ultrathin foldable, moldable and bendable substrates, the diversity of function due to the limitless palette of organic materials and the low environmental impact of the materials and their means of fabrication. With these unique qualities, organic electronics presents opportunities that range from lighting to solar cells to medical sensing. In this paper, we consider the transformative changes to electronic and photonic technologies that might yet be realized using these unconventional, soft semiconductor thin films. 
    more » « less
  3. Four new donor-acceptor-acceptor' (D-A-A')-configured donors, CPNT, DCPNT, CPNBT, and DCPNBT equipped with naphtho[1,2-c:5,6-c']bis([1,2,5]-thiadiazole) (NT) or naphtho[2,3-c][1,2,5]thiadiazole (NBT) as the central acceptor (A) unit bridging triarylamine donor (D) and cyano or dicyanovinylene acceptor (A'), were synthesized and characterized. All molecules exhibit bathochromic absorption shifts as compared to those of the benzothiadiazole (BT)-based analogues owing to improved electron-withdrawing and quinoidal character of NT and NBT cores that lead to stronger intramolecular charge transfer. Favorable energy level alignments with C70 , together with the good thermal stability and the antiparallel dimeric packing render CPNT and DCPNT suitable donors for vacuum-processed organic photovoltaics (OPV)s. OPVs based on DCPNT : C70 active layers displayed the best power conversion efficiency (PCE)=8.3%, along with an open circuit voltage of 0.92 V, a short circuit current of 14.5 mA cm-2 and a fill factor of 62% under 1 sun intensity, simulated AM1.5G illumination. Importantly, continuous light-soaking with AM 1.5G illumination has verified the durability of the devices based on CPNT:C70 and DCPNT : C70 as the active blends. The devices were examined for their feasibility of indoor light harvesting under 500 lux illumination by a TLD-840 fluorescent lamp, giving PCE=12.8% and 12.6%, respectively. These results indicate that the NT-based D-A-A'-type donors CPNT and DCPNT are potential candidates for high-stability vacuum-processed OPVs suitable for indoor energy harvesting. 
    more » « less
  4. In inorganic materials, an alloy is a mixture of two or more substances that generally exhibits electronic and/or physical properties that differ from those of its constituents. In organic systems, the formation of a “molecular alloy” comprising mixtures of molecular organic materials has also been proposed. We test the validity of this concept via the study of the optoelectronic properties of a ternary system that has previously been identified to form a molecular acceptor alloy, namely a blend of a poly(3-hexylthiophene) (P3HT) donor, with two acceptors indene-C 60 bisadduct (ICBA) and phenyl-C 61 -butyric acid methyl ester (PC 61 BM) [R. A. Street, et al. , J. Am. Chem. Soc. , 2013, 135 , 986–989]. Using photoelectron spectroscopy, we find that the ICBA:PC 61 BM blend shows the same highest occupied molecular orbital and exciton energies as that of ICBA, indicating the absence of a new exciton state in the blend. Furthermore, charge transfer state spectra of ternary blends are found to comprise a simple linear superposition of the corresponding binaries. From these results, no evidence of new, emergent electronic states is found to support the existence of a molecular alloy in this system. To our knowledge there is as yet no clear evidence of the existence of an alloy in any organic semiconductor system. We discuss the criteria that should be met by a molecular organic alloy and procedures needed for their unambiguous identification. 
    more » « less