Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Surface‐Engineered Pt‐Ni(111) Nanocatalysts for Boosting Their ORR Performance via Thermal TreatmentAbstract The electrochemical oxygen reduction reaction (ORR) is critical for fuel cell application, and modifying surface structures of electrocatalysts has proven effective in improving their catalytic performances. In this study, we investigated surface‐engineered Pt−Ni nano‐octahedra subjected to annealing in various atmospheres. All octahedral nanocrystals retained their Pt−Ni {111} facets at an elevated temperature following the annealing treatments. Air annealing led to the formation of nickel‐rich shells on the Pt−Ni surface. In contrast, hydrogen (H₂) as a reducing gas facilitated the reduction of surface Ni species, incorporating them into the Pt−Ni bulk alloy, which resulted in superior mass activity and specific activity for ORR‐approximately 2.4 and 2.3 times as high as those from the unmodified counterpart, respectively. After 20,000 potential cycles, the H₂/Ar‐annealed Pt−Ni nano‐octahedra maintained a mass activity of 3.92 A/ , surpassing the initial mass activity of the unannealed counterparts (2.95 A/ ). These findings demonstrate a viable approach for tailoring catalyst surfaces to enhance performance in various energy storage and conversion applications.more » « less
- 
            Abstract We present a one‐pot colloidal synthesis method for producing monodisperse multi‐metal (Co, Mn, and Fe) spinel nanocrystals (NCs), including nanocubes, nano‐octahedra, and concave nanocubes. This study explores the mechanism of morphology control, showcasing the pivotal roles of metal precursors and capping ligands in determining the exposed crystal planes on the NC surface. The cubic spinel NCs, terminated with exclusive {100}‐facets, demonstrate superior electrocatalytic activity for the oxygen reduction reaction (ORR) in alkaline media compared to their octahedral and concave cubic counterparts. Specifically, at 0.85 V, (CoMn)Fe2O4spinel oxide nanocubes achieve a high mass activity of 23.9 A/g and exhibit excellent stability, highlighting the promising ORR performance associated with {100}‐facets of multi‐metal spinel oxides over other low‐index and high‐index facets. Motivated by exploring the correlation between ORR performance and surface atom arrangement (active sites), surface element composition, as well as other factors, this study introduces a prospective approach for shape‐controlled synthesis of advanced spinel oxide NCs. It underscores the significance of catalyst shape control and suggests potential applications as nonprecious metal ORR electrocatalysts.more » « less
- 
            Abstract Despite the ubiquitous presence of passivation on most metal surfaces, the microscopic‐level picture of how surface passivation occurs has been hitherto unclear. Using the canonical example of the surface passivation of aluminum, here in situ atomistic transmission electron microscopy observations and computational modeling are employed to disentangle entangled microscopic processes and identify the atomic processes leading to the surface passivation. Based on atomic‐scale observations of the layer‐by‐layer expansion of the metal lattice and its subsequent transformation into the amorphous oxide, it is shown that the surface passivation occurs via a two‐stage oxidation process, in which the first stage is dominated by intralayer atomic shuffling whereas the second stage is governed by interlayer atomic disordering upon the progressive oxygen uptake. The first stage can be bypassed by increasing surface defects to promote the interlayer atomic migration that results in direct amorphization of multiple atomic layers of the metal lattice. The identified two‐stage reaction mechanism and the effect of surface defects in promoting interlayer atomic shuffling can find broader applicability in utilizing surface defects to tune the mass transport and passivation kinetics, as well as the composition, structure, and transport properties of the passivation films.more » « less
- 
            Despite the critical role of sintering phenomena in constraining the long-term durability of nano-sized particles, a clear understanding of nanoparticle sintering has remained elusive due to the challenges in atomically tracking the neck initiation and discerning different mechanisms. Through the integration of in-situ transmission electron microscopy and atomistic modeling, this study uncovers the atomic dynamics governing the neck initiation of Pt-Fe nanoparticles via a surface self-diffusion process, allowing for coalescence without significant particle movement. Real-time imaging reveals that thermally activated surface morphology changes in individual nanoparticles induce significant surface self-diffusion. The kinetic entrapment of self-diffusing atoms in the gaps between closely spaced nanoparticles leads to the nucleation and growth of atomic layers for neck formation. This surface self-diffusion-driven sintering process is activated at a relatively lower temperature compared to the classic Ostwald ripening and particle migration and coalescence processes. The fundamental insights have practical implications for manipulating the morphology, size distribution, and stability of nanostructures by leveraging surface self-diffusion processes.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Surface segregation is a common phenomenon in alloys exposed to reactive atmospheres, yet the atomic mechanisms underlying surface structure and composition dynamics remains largely unexplored. Using a combination of environmental transmission electron microscopy observations and atomistic modeling, here we report the surface segregation process of Pt atoms in a dilute Pt(Cu) alloy and determine the distribution of Pt atoms at both atomically flat and stepped surfaces of the Pt(Cu) alloy at elevated temperature and in a hydrogen gas atmosphere. Through directly probing Pt segregation, we find that Pt atoms segregated on the (100) surface exhibit a p(2×2) ordering, with ~25% Pt occupancy. In contrast, on the stepped (410) surface, hydrogen adsorption induces Pt segregation, initially occurring at the step edges, which then expands to the terrace sites upon increased hydrogen coverage, resulting in an ordered distribution of segregated Pt atoms with ~22% occupancy. These observations offer mechanistic insights into the structure and composition dynamics of the topmost atomic layer of the alloy in response to environmental stimuli and hold practical implications for the design and optimization of catalysts based on Pt group metals.more » « lessFree, publicly-accessible full text available October 31, 2025
- 
            A combination of several in situ techniques (XRD, XAS, AP-XPS, and E-TEM) was used to explore links between the structural and chemical properties of a Cu@TiOx catalyst under CO2 hydrogenation conditions. The active phase of the catalyst involved an inverse oxide/metal configuration, but the initial core@shell motif was disrupted during the pretreatment in H2. As a consequence of strong metal–support interactions, the titania shell cracked, and Cu particles migrated from the core to on top of the oxide with the simultaneous formation of a Cu–Ti–Ox phase. The generated Cu particles had a diameter of 20–40 nm and were decorated by small clusters of TiOx (<5 nm in size). Results of in situ XAS and XRD and images of E-TEM showed a very dynamic system, where the inverse oxide/metal configuration promoted the reactivity of the system toward CO2 and H2. At room temperature, CO2 oxidized the Cu nanoparticles (CO2,gas → COgas + Ooxide) inducing a redistribution of the TiOx clusters and big modifications in catalyst surface morphology. The generated oxide overlayer disappeared at elevated temperatures (>180 °C) upon exposure to H2, producing a transient surface that was very active for the reverse water–gas shift reaction (CO2 + H2 → CO + H2O) but was not stable at 200–350 °C. When oxidation and reduction occurred at the same time, under a mixture of CO2 and H2, the surface structure evolved toward a dynamic equilibrium that strongly depended on the temperature. Neither CO2 nor H2 can be considered as passive reactants. In the Cu@TiOx system, morphological changes were linked to variations in the composition of metal-oxide interfaces which were reversible with temperature or chemical environment and affected the catalytic activity of the system. The present study illustrates the dynamic nature of phenomena associated with the trapping and conversion of CO2.more » « less
- 
            This study outlines the preparation and characterization of a unique superlattice composed of indium oxide (In2O3) vertex-truncated nano-octahedra, along with an exploration of its response to high-pressure conditions. Transmission electron microscopy and scanning transmission electron microscopy were employed to determine the average circumradius (15.2 nm) of these vertex-truncated building blocks and their planar superstructure. The resilience and response of the superlattice to pressure variations, peaking at 18.01 GPa, were examined by using synchrotron-based Wide-Angle X-ray Scattering (WAXS) and Small-Angle X-ray Scattering (SAXS) techniques. The WAXS data revealed no phase transitions, reinforcing the stability of the 2D superlattice comprised of random layers in alignment with a p31m planar symmetry as discerned by SAXS. Notably, the SAXS data also unveiled a pressure-induced, irreversible translation of octahedra and ligand interaction occurring within the random layer. Through our examination of these pressure-sensitive behaviors, we identified a distinctive translation model inherent to octahedra and observed modulation in the superlattice cell parameter induced by pressure. This research signifies a noteworthy advancement in deciphering the intricate behaviors of 2D superlattices under high pressure.more » « less
- 
            Small nanoparticles of ceria deposited on a powder of CuO display a very high selectivity for the production of methanol via CO2 hydrogenation. CeO2/CuO catalysts with ceria loadings of 5%, 20%, and 50% were investigated. Among these, the system with 5% CeOx showed the best catalytic performance at temperatures between 200 and 350 °C. The evolution of this system under reaction conditions was studied using a combination of environmental transmission electron microscopy (E-TEM), in situ X-ray absorption spectroscopy (XAS), and time-resolved X-ray diffraction (TR-XRD). For 5% CeOx/Cu, the in situ studies pointed to a full conversion of CuO into metallic copper, with a complete transformation of Ce4+ into Ce3+. Images from E-TEM showed drastic changes in the morphology of the catalyst when it was exposed to H2, CO2, and CO2/H2 mixtures. Under a CO2/H2 feed, there was a redispersion of the ceria particles that was detected by E-TEM and in situ TR-XRD. These morphological changes were made possible by the inverse oxide/metal configuration and facilitate the binding and selective conversion of CO2 to methanol.more » « less
- 
            The microscopic mechanisms underpinning the spontaneous surface passivation of metals from ubiquitous water have remained largely elusive. Here, using in situ environmental electron microscopy to atomically monitor the reaction dynamics between aluminum surfaces and water vapor, we provide direct experimental evidence that the surface passivation results in a bilayer oxide film consisting of a crystalline-like Al(OH)3top layer and an inner layer of amorphous Al2O3. The Al(OH)3layer maintains a constant thickness of ~5.0 Å, while the inner Al2O3layer grows at the Al2O3/Al interface to a limiting thickness. On the basis of experimental data and atomistic modeling, we show the tunability of the dissociation pathways of H2O molecules with the Al, Al2O3, and Al(OH)3surface terminations. The fundamental insights may have practical significance for the design of materials and reactions for two seemingly disparate but fundamentally related disciplines of surface passivation and catalytic H2production from water.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
