skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1905974

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vorticity, a measure of the local rate of rotation of a fluid element, is the driver of incompressible flow. In viscous fluids, powering bulk flows requires the continuous injection of vorticity from boundaries to counteract the diffusive effects of viscosity. Here we power a flow from within by suspending approximately cylindrical particles and magnetically driving them to rotate at Reynolds numbers in the intermediate range. We find that a single particle generates a localized three-dimensional region of vorticity around it—which we call a vortlet—that drives a number of remarkable behaviours. Slight asymmetries in the particle shape can deform the vortlet and cause the particle to self-propel. Interactions between vortlets are similarly rich, generating bound dynamical states. When a large number of vortlets interact, they spontaneously form collectively moving flocks. These flocks remain coherent while propelling, splitting and merging. If enough particles are added so as to saturate the flow chamber, a homogeneous three-dimensional active chiral fluid of vortlets is formed, which can be manipulated with gravity or flow chamber boundaries, leading to lively collective dynamics. Our findings demonstrate an inertial regime for synthetic active matter, provide a controlled physical system for the quantitative study of three-dimensional flocking in non-sentient systems and establish a platform for the study of three-dimensional active chiral fluids. 
    more » « less
  2. null (Ed.)