skip to main content


Search for: All records

Award ID contains: 1906094

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aims and background

    The resurrection plantMyrothamnus flabellifoliatolerates complete desiccation and is a great model for studying how plants cope with extreme drought. Root-associated microbes play a major role in stress tolerance and are an attractive target for enhancing drought tolerance in staple crops. However, how these dynamics play out under the most extreme water limitation remains underexplored. This study aimed to identify bacterial and fungal communities that tolerate extreme drought stress in the bulk soil, rhizosphere, and endosphere ofM. flabellifolia.

    Methods

    High-throughput amplicon sequencing was used to characterise the microbial communities associated withM. flabellifolia.

    Results

    The bacterial phyla that were most abundant across all compartments wereAcidobacteriota, Actinobacteriota, Chloroflexota, Planctomycetota,andPseudomonadota, while the most abundant fungal phyla wereAscomycotaandBasidiomycota. Although the bulk soil hosted multiple beneficial root-associated microbes, the rhizosphere compartment showed the highest functional diversity of bacteria and fungi. In contrast, the endosphere exhibited a low abundance and diversity of microbes. These findings share consistent with the theory thatM. flabellifoliarecruits soil microbes from the bulk to the rhizosphere and finally to the endosphere. It is possible that these microbes could promote drought tolerance in associated plant tissues.

    Conclusion

    We find that compartments act as the major driver of microbial diversity, but the soil physicochemical factors also influence microbial composition. These results suggest that the root-associated microbiome ofM. flabellifoliais highly structured and may aid in plant function.

     
    more » « less
  2. Abstract

    The field of plant genome sequencing has grown rapidly in the past 20 years, leading to increases in the quantity and quality of publicly available genomic resources. The growing wealth of genomic data from an increasingly diverse set of taxa provides unprecedented potential to better understand the genome biology and evolution of land plants. Here we provide a contemporary view of land plant genomics, including analyses on assembly quality, taxonomic distribution of sequenced species and national participation. We show that assembly quality has increased dramatically in recent years, that substantial taxonomic gaps exist and that the field has been dominated by affluent nations in the Global North and China, despite a wide geographic distribution of study species. We identify numerous disconnects between the native range of focal species and the national affiliation of the researchers studying them, which we argue are rooted in colonialism—both past and present. Luckily, falling sequencing costs, widening availability of analytical tools and an increasingly connected scientific community provide key opportunities to improve existing assemblies, fill sampling gaps and empower a more global plant genomics community.

     
    more » « less
  3. The field of plant science has grown dramatically in the past two decades, but global disparities and systemic inequalities persist. Here, we analyzed ~300,000 papers published over the past two decades to quantify disparities across nations, genders, and taxonomy in the plant science literature. Our analyses reveal striking geographical biases—affluent nations dominate the publishing landscape and vast areas of the globe have virtually no footprint in the literature. Authors in Northern America are cited nearly twice as many times as authors based in Sub-Saharan Africa and Latin America, despite publishing in journals with similar impact factors. Gender imbalances are similarly stark and show remarkably little improvement over time. Some of the most affluent nations have extremely male biased publication records, despite supposed improvements in gender equality. In addition, we find that most studies focus on economically important crop and model species, and a wealth of biodiversity is underrepresented in the literature. Taken together, our analyses reveal a problematic system of publication, with persistent imbalances that poorly capture the global wealth of scientific knowledge and biological diversity. We conclude by highlighting disparities that can be addressed immediately and offer suggestions for long-term solutions to improve equity in the plant sciences. 
    more » « less
  4. Many desiccation-tolerant plants are widely distributed and exposed to substantial environmental variation across their native range. These environmental differences generate site-specific selective pressures that could drive natural variation in desiccation tolerance across populations. If identified, such natural variation can be used to target tolerance-enhancing characteristics and identify trait associations within a common genetic background. Here, we tested for natural variation in desiccation tolerance across wild populations of the South African resurrection plant Myrothamnus flabellifolia. We surveyed a suite of functional traits related to desiccation tolerance, leaf economics, and reproductive allocation in M. flabellifolia to test for trait associations and tradeoffs. Despite considerable environmental variation across the study area, M. flabellifolia plants were extremely desiccation tolerant at all sites, suggesting that tolerance is either maintained by selection or fixed in these populations. However, we detected notable associations between environmental variation, population characteristics, and fitness traits. Relative to mesic sites, plants in xeric sites were more abundant and larger, but were slower growing and less reproductive. The negative association between growth and reproduction with plant size and abundance pointed towards a potential growth–abundance tradeoff. The finding that M. flabellifolia is more common in xeric sites despite reductions in growth rate and reproduction suggests that these plants thrive in extreme aridity. 
    more » « less
  5. Resurrection plants have an extraordinary ability to survive extreme water loss but still revive full metabolic activity when rehydrated. These plants are useful models to understand the complex biology of vegetative desiccation tolerance. Despite extensive studies of resurrection plants, many details underlying the mechanisms of desiccation tolerance remain unexplored. To summarize the progress in resurrection plant research and identify unexplored questions, we conducted a systematic review of 15 model angiosperm resurrection plants. This systematic review provides an overview of publication trends on resurrection plants, the geographical distribution of species and studies, and the methodology used. Using the Preferred Reporting Items for Systematic reviews and Meta–Analyses protocol we surveyed all publications on resurrection plants from 2000 and 2020. This yielded 185 empirical articles that matched our selection criteria. The most investigated plants were Craterostigma plantagineum (17.5%), Haberlea rhodopensis (13.7%), Xerophyta viscosa (reclassified as X. schlechteri) (11.9%), Myrothamnus flabellifolia (8.5%), and Boea hygrometrica (8.1%), with all other species accounting for less than 8% of publications. The majority of studies have been conducted in South Africa, Bulgaria, Germany, and China, but there are contributions from across the globe. Most studies were led by researchers working within the native range of the focal species, but some international and collaborative studies were also identified. The number of annual publications fluctuated, with a large but temporary increase in 2008. Many studies have employed physiological and transcriptomic methodologies to investigate the leaves of resurrection plants, but there was a paucity of studies on roots and only one metagenomic study was recovered. Based on these findings we suggest that future research focuses on resurrection plant roots and microbiome interactions to explore microbial communities associated with these plants, and their role in vegetative desiccation tolerance. 
    more » « less
  6. null (Ed.)
    Desiccation tolerance has evolved recurrently across diverse land plant lineages as an adaptation for survival in regions where seasonal rainfall drives periodic drying of vegetative tissues. Growing interest in this phenomenon has fueled recent physiological, biochemical, and genomic insights into the mechanistic basis of desiccation tolerance. Although, desiccation tolerance is often viewed as binary and monolithic, substantial variation exists in the phenotype and underlying mechanisms across diverse lineages, heterogeneous populations, and throughout the development of individual plants. Most studies have focused on conserved responses in a subset desiccation-tolerant plants under laboratory conditions. Consequently, the variability and natural diversity of desiccation-tolerant phenotypes remains largely uncharacterized. Here, we discuss the natural variation in desiccation tolerance and argue that leveraging this diversity can improve our mechanistic understanding of desiccation tolerance. We summarize information collected from ~600 desiccation-tolerant land plants and discuss the taxonomic distribution and physiology of desiccation responses. We point out the need to quantify natural diversity of desiccation tolerance on three scales: variation across divergent lineages, intraspecific variation across populations, and variation across tissues and life stages of an individual plant. We conclude that this variability should be accounted for in experimental designs and can be leveraged for deeper insights into the intricacies of desiccation tolerance. 
    more » « less