Desiccation tolerance evolved recurrently across diverse plant lineages to enable survival in water-limited conditions. Many resurrection plants are polyploid, and several groups have hypothesized that polyploidy contributed to the evolution of desiccation tolerance. However, due to the vast phylogenetic distance between resurrection plant lineages, the rarity of desiccation tolerance, and the prevalence of polyploidy in plants, this hypothesis has been difficult to test. Here, we surveyed natural variation in morphological, reproductive, and desiccation tolerance traits across several cytotypes of a single species to test for links between polyploidy and increased resilience. We sampled multiple natural populations of the resurrection grass Microchloa caffra across an environmental gradient ranging from mesic to xeric in South Africa. We describe two distinct ecotypes of M. caffra that occupy different extremes of the environmental gradient and exhibit consistent differences in ploidy, morphological, reproductive, and desiccation tolerance traits in both field and common growth conditions. Interestingly, plants with more polyploid genomes exhibited consistently higher recovery from desiccation, were less reproductive, and were larger than plants with smaller genomes and lower ploidy. These data indicate that selective pressures in increasingly xeric sites may play a role in maintaining and increasing desiccation tolerance and are mediated by changes in ploidy.
- Award ID(s):
- 1906094
- PAR ID:
- 10332279
- Date Published:
- Journal Name:
- Plants
- Volume:
- 11
- Issue:
- 10
- ISSN:
- 2223-7747
- Page Range / eLocation ID:
- 1332
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
null (Ed.)Desiccation tolerance has evolved recurrently across diverse land plant lineages as an adaptation for survival in regions where seasonal rainfall drives periodic drying of vegetative tissues. Growing interest in this phenomenon has fueled recent physiological, biochemical, and genomic insights into the mechanistic basis of desiccation tolerance. Although, desiccation tolerance is often viewed as binary and monolithic, substantial variation exists in the phenotype and underlying mechanisms across diverse lineages, heterogeneous populations, and throughout the development of individual plants. Most studies have focused on conserved responses in a subset desiccation-tolerant plants under laboratory conditions. Consequently, the variability and natural diversity of desiccation-tolerant phenotypes remains largely uncharacterized. Here, we discuss the natural variation in desiccation tolerance and argue that leveraging this diversity can improve our mechanistic understanding of desiccation tolerance. We summarize information collected from ~600 desiccation-tolerant land plants and discuss the taxonomic distribution and physiology of desiccation responses. We point out the need to quantify natural diversity of desiccation tolerance on three scales: variation across divergent lineages, intraspecific variation across populations, and variation across tissues and life stages of an individual plant. We conclude that this variability should be accounted for in experimental designs and can be leveraged for deeper insights into the intricacies of desiccation tolerance.more » « less
-
Abstract Plant genome size influences the functional relationships between cellular and whole‐plant physiology, but we know little about its importance to plant tolerance of environmental stressors and how it contributes to range limits and invasion success. We used native and invasive lineages of a wetland plant to provide the first experimental test of the Large Genome Constraint Hypothesis (LGCH)—that plants with large genomes are less tolerant of environmental stress and less plastic under stress gradients than plants with small genomes. We predicted that populations with larger genomes would have a lower tolerance and less plasticity to a stress gradient than populations with smaller genomes. In replicated experiments in northern and southern climates in the United States, we subjected plants from 35 populations varying in genome size and lineage to two salinity treatments. We measured traits associated with growth, physiology, nutrition, defense, and plasticity. Using AICc model selection, we found all plant traits, except stomatal conductance, were influenced by environmental stressors and genome size. Increasing salinity was stressful to plants and affected most plant traits. Notably, biomass in the high‐salinity treatment was 3.0 and 4.9 times lower for the invasive and native lineages, respectively. Plants in the warmer southern greenhouse had higher biomass, stomate density, stomatal conductance, leaf toughness, and lower aboveground percentage of N and total phenolics than in the northern greenhouse. Moreover, responses to the salinity gradient were generally much stronger in the southern than northern greenhouse. Aboveground biomass increased significantly with genome size for the invasive lineage (43% across genome sizes) but not for the native. For 8 of 20 lineage trait comparisons, greenhouse location × genome size interaction was also significant. Interestingly, the slope of the relationship between genome size and trait means was in the opposite direction for some traits between the gardens providing mixed support for LGCH. Finally, for 30% of the comparisons, plasticity was significantly related to genome size—for some plant traits, the relationship was positive, and in others, it was negative. Overall, we found mixed support for LGCH and for the first time found that genome size is associated with plasticity, a trait widely regarded as important to invasion success.
-
Abstract Aim Plant trait databases often contain traits that are correlated, but for whom direct (undirected statistical dependency) and indirect (mediated by other traits) connections may be confounded. The confounding of correlation and connection hinders our understanding of plant strategies, and how these vary among growth forms and climate zones. We identified the direct and indirect connections across plant traits relevant to competition, resource acquisition and reproductive strategies using a global database and explored whether connections within and between traits from different tissue types vary across climates and growth forms.
Location Global.
Major taxa studied Plants.
Time period Present.
Methods We used probabilistic graphical models and a database of 10 plant traits (leaf area, specific leaf area, mass‐ and area‐based leaf nitrogen and phosphorous content, leaf life span, plant height, stem specific density and seed mass) with 16,281 records to describe direct and indirect connections across woody and non‐woody plants across tropical, temperate, arid, cold and polar regions.
Results Trait networks based on direct connections are sparser than those based on correlations. Land plants had high connectivity across traits within and between tissue types; leaf life span and stem specific density shared direct connections with all other traits. For both growth forms, two groups of traits form modules of more highly connected traits; one related to resource acquisition, the other to plant architecture and reproduction. Woody species had higher trait network modularity in polar compared to temperate and tropical climates, while non‐woody species did not show significant differences in modularity across climate regions.
Main conclusions Plant traits are highly connected both within and across tissue types, yet traits segregate into persistent modules of traits. Variation in the modularity of trait networks suggests that trait connectivity is shaped by prevailing environmental conditions and demonstrates that plants of different growth forms use alternative strategies to cope with local conditions.
-
Abstract The resilience of organisms to climate change through adaptive evolution is dependent on the extent of genetically based variation in key phenotypic traits and the nature of genetic associations between them. For aquatic animals, upper thermal tolerance and hypoxia tolerance are likely to be a important determinants of sensitivity to climate change. To determine the genetic basis of these traits and to detect associations between them, we compared naturally occurring populations of two subspecies of Atlantic killifish,
Fundulus heteroclitus , that differ in both thermal and hypoxia tolerance. Multilocus association mapping demonstrated that 47 and 35 single nucleotide polymorphisms (SNPs) explained 43.4% and 51.9% of variation in thermal and hypoxia tolerance, respectively, suggesting that genetic mechanisms underlie a substantial proportion of variation in each trait. However, no explanatory SNPs were shared between traits, and upper thermal tolerance varied approximately linearly with latitude, whereas hypoxia tolerance exhibited a steep phenotypic break across the contact zone between the subspecies. These results suggest that upper thermal tolerance and hypoxia tolerance are neither phenotypically correlated nor genetically associated, and thus that rates of adaptive change in these traits can be independently fine‐tuned by natural selection. This modularity of important traits can underpin the evolvability of organisms to complex future environmental change.