Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We show a number of Toda brackets in the homotopy of the motivic bordism spectrum MGL and of the Real bordism spectrum MUR. These brackets are "red-shifting" in the sense that while the terms in the bracket will be of some chromatic height n, the bracket itself will be of chromatic height (n+1). Using these, we deduce a family of exotic multiplications in the π_{**}MGL-module structure of the motivic Morava K-theories, including non-trivial multiplications by 2. These in turn imply the analogous family of exotic multiplications in the π_{\star}MUR-module structure on the Real Morava K-theories.more » « less
-
The primary goal of this paper is to study Spanier–Whitehead duality in the K(n)-local category. One of the key players in the K(n)-local category is the Lubin–Tate spectrum 𝐸𝑛, whose homotopy groups classify deformations of a formal group law of height n, in the implicit characteristic p. It is known that 𝐸𝑛 is self-dual up to a shift; however, that does not fully take into account the action of the automorphism group 𝔾𝑛 of the formal group in question. In this paper we find that the 𝔾𝑛-equivariant dual of 𝐸𝑛 is in fact 𝐸𝑛 twisted by a sphere with a non-trivial (when 𝑛>1) action by 𝔾𝑛. This sphere is a dualizing module for the group 𝔾𝑛, and we construct and study such an object 𝐼𝒢 for any compact p-adic analytic group 𝒢. If we restrict the action of 𝒢 on 𝐼𝒢 to certain type of small subgroups, we identify 𝐼𝒢 with a specific representation sphere coming from the Lie algebra of 𝒢. This is done by a classification of p-complete sphere spectra with an action by an elementary abelian p-group in terms of characteristic classes, and then a specific comparison of the characteristic classes in question. The setup makes the theory quite accessible for computations, as we demonstrate in the later sections of this paper, determining the K(n)-local Spanier–Whitehead duals of 𝐸ℎ𝐻𝑛 for select choices of p and n and finite subgroups H of 𝔾𝑛.more » « less
-
We study modules over the commutative ring spectrum 𝐻𝔽₂∧𝐻𝔽₂, whose coefficient groups are quotients of the dual Steenrod algebra by collections of the Milnor generators. We show that very few of these quotients admit algebra structures, but those that do can be constructed simply: killing a generator ξ_{k} in the category of associative algebras freely kills the higher generators ξ_{k+n}. Using new information about the conjugation operation in the dual Steenrod algebra, we also consider quotients by families of Milnor generators and their conjugates. This allows us to produce a family of associative 𝐻𝔽₂∧𝐻𝔽₂-algebras whose coefficient rings are finite-dimensional and exhibit unexpected duality features. We then use these algebras to give detailed computations of the homotopy groups of several modules over this ring spectrum.more » « less
An official website of the United States government
