skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1906361

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Givenndisjoint intervals on together withnfunctions , , and an matrix , the problem is to find anL2solution , , to the linear system , where , is a matrix of finite Hilbert transforms with defined on , and is a matrix of the corresponding characteristic functions on . Since we can interpret , as a generalized multi‐interval finite Hilbert transform, we call the formula for the solution as “the inversion formula” and the necessary and sufficient conditions for the existence of a solution as the “range conditions”. In this paper we derive the explicit inversion formula and the range conditions in two specific cases: a) the matrix Θ is symmetric and positive definite, and; b) all the entries of Θ are equal to one. We also prove the uniqueness of solution, that is, that our transform is injective. In the case a), that is, when the matrix Θ is positive definite, the inversion formula is given in terms of the solution of the associated matrix Riemann–Hilbert Problem. In the case b) we reduce the multi interval problem to a problem onncopies of and then express our answers in terms of the Fourier transform. We also discuss other cases of the matrix Θ. 
    more » « less