We propose aC0interior penalty method for the fourth-order stream function formulation of the surface Stokes problem. The scheme utilizes continuous, piecewise polynomial spaces defined on an approximate surface. We show that the resulting discretization is positive definite and derive error estimates in various norms in terms of the polynomial degree of the finite element space as well as the polynomial degree to define the geometry approximation. A notable feature of the scheme is that it does not explicitly depend on the Gauss curvature of the surface. This is achievedviaa novel integration-by-parts formula for the surface biharmonic operator.
more »
« less
Inversion formula and range conditions for a linear system related with the multi‐interval finite Hilbert transform in L 2
Abstract Givenndisjoint intervals on together withnfunctions , , and an matrix , the problem is to find anL2solution , , to the linear system , where , is a matrix of finite Hilbert transforms with defined on , and is a matrix of the corresponding characteristic functions on . Since we can interpret , as a generalized multi‐interval finite Hilbert transform, we call the formula for the solution as “the inversion formula” and the necessary and sufficient conditions for the existence of a solution as the “range conditions”. In this paper we derive the explicit inversion formula and the range conditions in two specific cases: a) the matrix Θ is symmetric and positive definite, and; b) all the entries of Θ are equal to one. We also prove the uniqueness of solution, that is, that our transform is injective. In the case a), that is, when the matrix Θ is positive definite, the inversion formula is given in terms of the solution of the associated matrix Riemann–Hilbert Problem. In the case b) we reduce the multi interval problem to a problem onncopies of and then express our answers in terms of the Fourier transform. We also discuss other cases of the matrix Θ.
more »
« less
- PAR ID:
- 10450121
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Mathematische Nachrichten
- Volume:
- 294
- Issue:
- 8
- ISSN:
- 0025-584X
- Page Range / eLocation ID:
- p. 1523-1546
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> We study (multi) fermion - monopole bound states, many of which are the states that dyons adiabatically transition into as fermions become light. The properties of these bound states depend critically on the UV symmetries preserved by the fermion mass terms, their relative size, and the value ofθ. Depending on the relative size of the mass terms and the value ofθ, the bound states can undergo phase transitions as well as transition from being stable to unstable. In some simple situations, the bound state solution can be related to the Witten effect of another theory with fewer fermions and larger gauge coupling. These bound states are a result of mass terms and symmetry breaking boundary conditions at the monopole core and, consequently, these bound states do not necessarily have definite quantum numbers under accidental IR symmetries. Additionally, they have binding energies that are$$ \mathcal{O}(1) $$ times the fermion mass and bound state radii of order their inverse mass. As the massless limit is approached, the bound state radii approach infinity, and they become new asymptotic states with odd quantum numbers giving a dynamical understanding to the origin of semitons.more » « less
-
A<sc>bstract</sc> Euclidean path integrals for UV-completions ofd-dimensional bulk quantum gravity were recently studied in [1] by assuming that they satisfy axioms of finiteness, reality, continuity, reflection-positivity, and factorization. Sectors$$ {\mathcal{H}}_{\mathcal{B}} $$ of the resulting Hilbert space were then defined for any (d− 2)-dimensional surface$$ \mathcal{B} $$ , where$$ \mathcal{B} $$ may be thought of as the boundary ∂Σ of a bulk Cauchy surface in a corresponding Lorentzian description, and where$$ \mathcal{B} $$ includes the specification of appropriate boundary conditions for bulk fields. Cases where$$ \mathcal{B} $$ was the disjoint unionB⊔Bof two identical (d− 2)-dimensional surfacesBwere studied in detail and, after the inclusion of finite-dimensional ‘hidden sectors,’ were shown to provide a Hilbert space interpretation of the associated Ryu-Takayanagi entropy. The analysis was performed by constructing type-I von Neumann algebras$$ {\mathcal{A}}_L^B $$ ,$$ {\mathcal{A}}_R^B $$ that act respectively at the left and right copy ofBinB⊔B. Below, we consider the case of general$$ \mathcal{B} $$ , and in particular for$$ \mathcal{B} $$ =BL⊔BRwithBL,BRdistinct. For anyBR, we find that the von Neumann algebra atBLacting on the off-diagonal Hilbert space sector$$ {\mathcal{H}}_{B_L\bigsqcup {B}_R} $$ is a central projection of the corresponding type-I von Neumann algebra on the ‘diagonal’ Hilbert space$$ {\mathcal{H}}_{B_L\bigsqcup {B}_L} $$ . As a result, the von Neumann algebras$$ {\mathcal{A}}_L^{B_L} $$ ,$$ {\mathcal{A}}_R^{B_L} $$ defined in [1] using the diagonal Hilbert space$$ {\mathcal{H}}_{B_L\bigsqcup {B}_L} $$ turn out to coincide precisely with the analogous algebras defined using the full Hilbert space of the theory (including all sectors$$ {\mathcal{H}}_{\mathcal{B}} $$ ). A second implication is that, for any$$ {\mathcal{H}}_{B_L\bigsqcup {B}_R} $$ , including the same hidden sectors as in the diagonal case again provides a Hilbert space interpretation of the Ryu-Takayanagi entropy. We also show the above central projections to satisfy consistency conditions that lead to a universal central algebra relevant to all choices ofBLandBR.more » « less
-
null (Ed.)In two dimensions, we consider the problem of inversion of the attenuated \begin{document}$ X $$\end{document}-ray transform of a compactly supported function from data restricted to lines leaning on a given arc. We provide a method to reconstruct the function on the convex hull of this arc. The attenuation is assumed known. The method of proof uses the Hilbert transform associated with \begin{document}$$ A $$\end{document}$-analytic functions in the sense of Bukhgeim.more » « less
-
Abstract In this article, using that the fractional Laplacian can be factored into a product of the divergence operator, a Riesz potential operator and the gradient operator, we introduce an anomalous fractional diffusion operator, involving a matrixK(x), suitable when anomalous diffusion is being studied in a non homogeneous medium. For the case ofK(x) a constant, symmetric positive definite matrix we show that the fractional Poisson equation is well posed, and determine the regularity of the solution in terms of the regularity of the right hand side function.more » « less
An official website of the United States government
