skip to main content


Search for: All records

Award ID contains: 1906719

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Subgrid processes in global climate models are represented by parameterizations which are a major source of uncertainties in simulations of climate. In recent years, it has been suggested that machine‐learning (ML) parameterizations based on high‐resolution model output data could be superior to traditional parameterizations. Currently, both traditional and ML parameterizations of subgrid processes in the atmosphere are based on a single‐column approach, which only use information from single atmospheric columns. However, single‐column parameterizations might not be ideal since certain atmospheric phenomena, such as organized convective systems, can cross multiple grid boxes and involve slantwise circulations that are not purely vertical. Here we train neural networks (NNs) using non‐local inputs spanning over 3 × 3 columns of inputs. We find that including the non‐local inputs improves the offline prediction of a range of subgrid processes. The improvement is especially notable for subgrid momentum transport and for atmospheric conditions associated with mid‐latitude fronts and convective instability. Using an interpretability method, we find that the NN improvements partly rely on using the horizontal wind divergence, and we further show that including the divergence or vertical velocity as a separate input substantially improves offline performance. However, non‐local winds continue to be useful inputs for parameterizating subgrid momentum transport even when the vertical velocity is included as an input. Overall, our results imply that the use of non‐local variables and the vertical velocity as inputs could improve the performance of ML parameterizations, and the use of these inputs should be tested in online simulations in future work.

     
    more » « less
  2. Abstract

    The inorganic chlorine (Cly) and odd nitrogen (NOy) chemical families influence stratospheric O3. In January 2020 Australian wildfires injected record‐breaking amounts of smoke into the southern stratosphere. Within 1–2 months ground‐based and satellite observations showed Clyand NOywere repartitioned. By May, lower stratospheric HCl columns declined by ∼30% and ClONO2columns increased by 40%–50%. The Clyperturbations began and ended near the equinoxes, increased poleward, and peaked at the winter solstice. NO2decreased from February to April, consistent with sulfate aerosol reactions, but returned to typical values by June ‐ months before the Clyrecovery. Transport tracers show that dynamics not chemistry explains most of the observed O3decrease after April, with no significant transport earlier. Simulations assuming wildfire smoke behaves identically to sulfate aerosols couldn't reproduce observed Clychanges, suggesting they have different composition and chemistry. This undermines our ability to predict ozone in a changing climate.

     
    more » « less
  3. The 2019 to 2020 Australian summer wildfires injected an amount of organic gases and particles into the stratosphere unprecedented in the satellite record since 2002, causing large unexpected changes in HCl and ClONO 2 . These fires provided a novel opportunity to evaluate heterogeneous reactions on organic aerosols in the context of stratospheric chlorine and ozone depletion chemistry. It has long been known that heterogeneous chlorine (Cl) activation occurs on the polar stratospheric clouds (PSCs; liquid and solid particles containing water, sulfuric acid, and in some cases nitric acid) that are found in the stratosphere, but these are only effective for ozone depletion chemistry at temperatures below about 195 K (i.e., largely in the polar regions during winter). Here, we develop an approach to quantitatively assess atmospheric evidence for these reactions using satellite data for both the polar (65 to 90°S) and the midlatitude (40 to 55°S) regions. We show that heterogeneous reactions apparently even happened at temperatures at 220 K during austral autumn on the organic aerosols present in 2020 in both regions, in contrast to earlier years. Further, increased variability in HCl was also found after the wildfires, suggesting diverse chemical properties among the 2020 aerosols. We also confirm the expectation based upon laboratory studies that heterogeneous Cl activation has a strong dependence upon water vapor partial pressure and hence atmospheric altitude, becoming much faster close to the tropopause. Our analysis improves the understanding of heterogeneous reactions that are important for stratospheric ozone chemistry under both background and wildfire conditions. 
    more » « less
  4. Abstract. Polar stratospheric clouds (PSCs) play a key role in the polar chemistry of the stratosphere. Nitric acid trihydrate (NAT) particles have been shown to lead to denitrification of the lower stratosphere. While the existence of large NAT particles (NAT “rocks”) has been verified by many measurements, especially in the Northern Hemisphere (NH), most current chemistry–climate models use simplified parameterizations, often based on evaluations in the Southern Hemisphere where the polar vortex is stable enough that accounting for NAT rocks is not as important as in the NH. Here, we evaluate the probability density functions of various gaseous species in the polar vortex using one such model, the Whole Atmosphere Community Climate Model (WACCM), and compare these with measurements by the Michelson Interferometer for Passive Atmospheric Sounding onboard the Environmental Satellite (MIPAS/Envisat) and two ozonesonde stations for a range of years and in both hemispheres. Using the maximum difference between the distributions of MIPAS and WACCM as a measure of coherence, we find better agreement for HNO3 when reducing the NAT number density from the standard value of 10−2 used in this model to 5×10-4 cm−3 for almost all spring seasons during the MIPAS period in both hemispheres. The distributions of ClONO2 and O3 are not greatly affected by the NAT density. The average difference between WACCM and ozonesondes supports the need to reduce the NAT number density in the model. Therefore, this study suggests using a NAT number density of 5×10-4 cm−3 for future simulations with WACCM. 
    more » « less
  5. Massive Australian wildfires lofted smoke directly into the stratosphere in the austral summer of 2019/20. The smoke led to increases in optical extinction throughout the midlatitudes of the southern hemisphere that rivalled substantial volcanic perturbations. Previous studies have assumed that the smoke became coated with sulfuric acid and water and would deplete the ozone layer through heterogeneous chemistry on those surfaces, as is routinely observed following volcanic enhancements of the stratospheric sulfate layer. Here, observations of extinction and reactive nitrogen species from multiple independent satellites that sampled the smoke region are compared to one another and to model calculations. The data display a strong decrease in reactive nitrogen concentrations with increased aerosol extinction in the stratosphere, which is a known fingerprint for key heterogeneous chemistry on sulfate/H 2 O particles (specifically the hydrolysis of N 2 O 5 to form HNO 3 ). This chemical shift affects not only reactive nitrogen but also chlorine and reactive hydrogen species and is expected to cause midlatitude ozone layer depletion. Comparison of the model ozone to observations suggests that N 2 O 5 hydrolysis contributed to reduced ozone, but additional chemical and/or dynamical processes are also important. These findings suggest that if wildfire smoke injection into the stratosphere increases sufficiently in frequency and magnitude as the world warms due to climate change, ozone recovery under the Montreal Protocol could be impeded, at least sporadically. Modeled austral midlatitude total ozone loss was about 1% in March 2020, which is significant compared to expected ozone recovery of about 1% per decade. 
    more » « less
  6. The catalytic depletion of Antarctic stratospheric ozone is linked to anthropogenic emissions of chlorine and bromine. Despite its larger ozone-depleting efficiency, the contribution of ocean-emitted iodine to ozone hole chemistry has not been evaluated, due to the negligible iodine levels previously reported to reach the stratosphere. Based on the recently observed range (0.77 ± 0.1 parts per trillion by volume [pptv]) of stratospheric iodine injection, we use the Whole Atmosphere Community Climate Model to assess the role of iodine in the formation and recent past evolution of the Antarctic ozone hole. Our 1980–2015 simulations indicate that iodine can significantly impact the lower part of the Antarctic ozone hole, contributing, on average, 10% of the lower stratospheric ozone loss during spring (up to 4.2% of the total stratospheric column). We find that the inclusion of iodine advances the beginning and delays the closure stages of the ozone hole by 3 d to 5 d, increasing its area and mass deficit by 11% and 20%, respectively. Despite being present in much smaller amounts, and due to faster gas-phase photochemical reactivation, iodine can dominate (∼73%) the halogen-mediated lower stratospheric ozone loss during summer and early fall, when the heterogeneous reactivation of inorganic chlorine and bromine reservoirs is reduced. The stratospheric ozone destruction caused by 0.77 pptv of iodine over Antarctica is equivalent to that of 3.1 (4.6) pptv of biogenic very short-lived bromocarbons during spring (rest of sunlit period). The relative contribution of iodine to future stratospheric ozone loss is likely to increase as anthropogenic chlorine and bromine emissions decline following the Montreal Protocol. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)
    Abstract Matsuno–Gill circulations have been widely studied in tropical meteorology, but their impact on stratospheric chemistry has seldom been explicitly evaluated. This study demonstrates that, in a model nudged to reanalysis, anticyclonic Rossby wave gyres that form near the tropopause as a result of equatorially symmetric heating in the troposphere provide a dynamical mechanism to influence tropical and subtropical atmospheric chemistry during near-equinox months. The anticyclonic flow entrains extratropical air from higher latitudes into the deep tropics of both hemispheres and induces cooling in the already cold upper-troposphere/lower-stratosphere (UTLS) region. Both of these aspects of the circulation allow heterogeneous chlorine activation on sulfuric acid aerosols to proceed rapidly, primarily via the HCl + ClONO 2 reaction. Precipitation rates and heating rates from reanalysis are shown to be consistent with these heating and circulation response patterns in the months of interest. This study analyzes specified dynamics simulations from the Whole Atmosphere Community Climate Model (SD-WACCM) with and without tropical heterogeneous chemistry to demonstrate that these circulations influence substantially the distributions of, for example, NO 2 and ClO in the UTLS tropics and subtropics of both hemispheres. This provides a previously unrecognized dynamical influence on the spatial structures of atmospheric composition changes in the UTLS during near-equinox months. 
    more » « less