Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We are concerned with the incompressible limit of global-in-time strong solutions with arbitrary large initial velocity for the three-dimensional compressible viscoelastic equations. The incompressibility is achieved by the large value of the volume viscosity, which is different from the low Mach number limit. To obtain the uniform estimates, we establish the estimates for the potential part and the divergence-free part of the velocity. As the volume viscosity goes to infinity, the dispersion associated with the pressure waves tends to disappear, but the large volume viscosity provides a strong dissipation on the potential part of the velocity forcing the flow to be almost incompressible.more » « less
-
We consider the Cauchy problem for the inhomogeneous incompressible logarithmical hyper-dissipative Navier-Stokes equations in higher dimensions. By means of the Littlewood-Paley techniques and new ideas, we establish the existence and uniqueness of the global strong solution with vacuum over the whole space . Moreover, we also obtain the exponential decay-in-time of the strong solution. Our result holds without any smallness on the initial data and the initial density is allowed to have vacuum.more » « less
-
This is a survey article for this special issue providing a review of the recent results in the mathematical analysis of active hydrodynamics. Both the incompressible and compressible models are discussed for the active liquid crystals in the Landau-de Gennes Q-tensor framework. The mathematical results on the weak solutions, regularity, and weak-strong uniqueness are presented for the incompressible flows. The global existence of weak solution to the compressible flows is recalled. Other related results on the inhomogeneous flows, incompressible limits, and stochastic analysis are also reviewed.more » « less
An official website of the United States government
