Global well-posedness and exponential decay for the inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation
We consider the Cauchy problem for the inhomogeneous incompressible logarithmical hyper-dissipative Navier-Stokes equations in higher dimensions. By means of the Littlewood-Paley techniques and new ideas, we establish the existence and uniqueness of the global strong solution with vacuum over the whole space . Moreover, we also obtain the exponential decay-in-time of the strong solution. Our result holds without any smallness on the initial data and the initial density is allowed to have vacuum.
more »
« less
- PAR ID:
- 10466787
- Publisher / Repository:
- AMS
- Date Published:
- Journal Name:
- Quarterly of Applied Mathematics
- Volume:
- 81
- Issue:
- 2
- ISSN:
- 0033-569X
- Page Range / eLocation ID:
- 307 to 327
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We prove a number of results on the survival of the type-I property under extensions of locally compact groups: (a) that given a closed normal embedding of locally compact groups and a twisted action thereof on a (post)liminal -algebra the twisted crossed product is again (post)liminal and (b) a number of converses to the effect that under various conditions a normal, closed, cocompact subgroup is type-I as soon as is. This happens for instance if is discrete and is Lie, or if is finitely-generated discrete (with no further restrictions except cocompactness). Examples show that there is not much scope for dropping these conditions. In the same spirit, call a locally compact group type-I-preserving if all semidirect products are type-I as soon as is, andlinearlytype-I-preserving if the same conclusion holds for semidirect products arising from finite-dimensional -representations. We characterize the (linearly) type-I-preserving groups that are (1) discrete-by-compact-Lie, (2) nilpotent, or (3) solvable Lie.more » « less
-
We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable -category of non- -invariant motivic spectra, which turns out to be equivalent to the -category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this -category satisfies -homotopy invariance and weighted -homotopy invariance, which we use in place of -homotopy invariance to obtain analogues of several key results from -homotopy theory. These allow us in particular to define a universal oriented motivic -ring spectrum . We then prove that the algebraic K-theory of a qcqs derived scheme can be recovered from its -cohomology via a Conner–Floyd isomorphism\[ \]where is the Lazard ring and . Finally, we prove a Snaith theorem for the periodized version of .more » « less
-
In this brief note, we investigate the -genus of knots, i.e., the least genus of a smooth, compact, orientable surface in bounded by a knot in . We show that this quantity is unbounded, unlike its topological counterpart. We also investigate the -genus of torus knots. We apply these results to improve the minimal genus bound for some homology classes in .more » « less
-
We consider minimizing harmonic maps from into a closed Riemannian manifold and prove: 1. an extension to of Almgren and Lieb’s linear law. That is, if the fundamental group of the target manifold is finite, we have\[ \]2. an extension of Hardt and Lin’s stability theorem. Namely, assuming that the target manifold is we obtain that the singular set of is stable under small -perturbations of the boundary data. In dimension both results are shown to hold with weaker hypotheses, i.e., only assuming that the trace of our map lies in the fractional space with and satisfying . We also discuss sharpness.more » « less
An official website of the United States government

