skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1907542

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    In this paper we explore what role humans might play in designing tools for reinforcement learning (RL) agents to interact with the world. Recent work has explored RL methods that optimize a robot’s morphology while learning to control it, effectively dividing an RL agent’s environment into the external world and the agent’s interface with the world. Taking a user-centered design (UCD) approach, we explore the potential of a human, instead of an algorithm, redesigning the agent’s tool. Using UCD to design for a machine learning agent brings up several research questions, including what it means to understand an RL agent’s experience, beliefs, tendencies, and goals. After discussing these questions, we then present a system we developed to study humans designing a 2D racecar for an RL autonomous driver. We conclude with findings and insights from exploratory pilots with twelve users using this system. 
    more » « less
  2. null (Ed.)
    We address the challenge of inferring the design intentions of a human by an intelligent virtual agent that collaborates with the human. First, we propose a dynamic Bayesian network model that relates design intentions, objectives, and solutions during a human's exploration of a problem space. We then train the model on design behaviors generated by a search agent and use the model parameters to infer the design intentions in a test set of real human behaviors. We find that our model is able to infer the exact intentions across three objectives associated with a sequence of design outcomes 31.3% of the time. Inference accuracy is 50.9% for the top two predictions and 67.2% for the top three predictions. For any singular intention over an objective, the model's mean F1-score is 0.719. This provides a reasonable foundation for an intelligent virtual agent to infer design intentions purely from design outcomes toward establishing joint intentions with a human designer. These results also shed light on the potential benefits and pitfalls in using simulated data to train a model for human design intentions. 
    more » « less