skip to main content


Title: Design Intention Inference for Virtual Co-Design Agents
We address the challenge of inferring the design intentions of a human by an intelligent virtual agent that collaborates with the human. First, we propose a dynamic Bayesian network model that relates design intentions, objectives, and solutions during a human's exploration of a problem space. We then train the model on design behaviors generated by a search agent and use the model parameters to infer the design intentions in a test set of real human behaviors. We find that our model is able to infer the exact intentions across three objectives associated with a sequence of design outcomes 31.3% of the time. Inference accuracy is 50.9% for the top two predictions and 67.2% for the top three predictions. For any singular intention over an objective, the model's mean F1-score is 0.719. This provides a reasonable foundation for an intelligent virtual agent to infer design intentions purely from design outcomes toward establishing joint intentions with a human designer. These results also shed light on the potential benefits and pitfalls in using simulated data to train a model for human design intentions.  more » « less
Award ID(s):
1907542
NSF-PAR ID:
10292482
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IVA '20: Proceedings of the 20th ACM International Conference on Intelligent Virtual Agents
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Providing adaptive scaffolds to help learners develop effective self‐regulated learning (SRL) behaviours has been an important goal for intelligent learning environments. Adaptive scaffolding is especially important in open‐ended learning environments (OELE), where novice learners often face difficulties in completing their learning tasks.

    Objectives

    This paper presents a systematic framework for adaptive scaffolding in Betty's Brain, a learning‐by‐teaching OELE for middle school science, where students construct a causal model to teach a virtual agent, generically named Betty. We evaluate the adaptive scaffolding framework and discuss its implications on the development of more effective scaffolds for SRL in OELEs.

    Methods

    We detect key cognitive/metacognitiveinflection points, that is, moments where students' behaviours and performance change during learning, often suggesting an inability to apply effective learning strategies. At inflection points, Mr. Davis (a mentor agent in Betty's Brain) or Betty (the teachable agent) provides context‐specific conversational feedback, focusing on strategies to help the student become a more productive learner, or encouragement to support positive emotions. We conduct a classroom study with 98 middle schoolers to analyse the impact of adaptive scaffolds on students' learning behaviours and performance. We analyse how students with differential pre‐to‐post learning outcomes receive and use the scaffolds to support their subsequent learning process in Betty's Brain.

    Results and Conclusions

    Adaptive scaffolding produced mixed results, with some scaffolds (viz., strategic hints that supported debugging and assessment of causal models) being generally more useful to students than others (viz., encouragement prompts). Additionally, there were differences in how students with high versus low learning outcomes responded to some hints, as suggested by the differences in their learning behaviours and performance in the intervals after scaffolding. Overall, our findings suggest how adaptive scaffolding in OELEs like Betty's Brain can be further improved to better support SRL behaviours and narrow the learning outcomes gap between high and low performing students.

    Implications

    This paper contributes to our understanding and impact of adaptive scaffolding in OELEs. The results of our study indicate that successful scaffolding has to combine context‐sensitive inflection points with conversational feedback that is tailored to the students' current proficiency levels and needs. Also, our conceptual framework can be used to design adaptive scaffolds that help students develop and apply SRL behaviours in other computer‐based learning environments.

     
    more » « less
  2. This paper describes a process that integrates behavioral and decision science methods to design and evaluate interventions to disrupt illicit behaviors. We developed this process by extending a framework used to study systems with uncertain outcomes, where only partial information is observable, and wherein there are multiple participating parties with competing goals. The extended framework that we propose builds from artefactual data collection, thematic analysis, and descriptive analysis, toward predictive modeling and agent-based modeling. We use agent-based modeling to characterize and predict interactions between system participants for the purpose of improving our understanding of interventional targets in a virtual environment before piloting them in the field. We apply our extended framework to an exploratory case study that examines the potential of worker centers as a venue for deploying interventions to address labor exploitation and human trafficking. This case study focuses on reducing wage theft, the most prevalent form of exploitation experienced by day laborers and applies the first three steps of the extended framework. Specifically, the case study makes a preliminary assessment of two types of social interventions designed to disrupt exploitative processes and improve the experiences of day laborers, namely: (1) advocates training day laborers about their workers’ rights and options that they have for addressing wage theft and (2) media campaigns designed to disseminate similar educational messages about workers’ rights and options to address wage theft through broadcast channels. Applying the extended framework to this case study of day laborers at a worker center demonstrates how digital technology could be used to monitor, evaluate, and support collaborations between worker center staff and day laborers. Ideally, these collaborations could be improved to mitigate the risks and costs of wage theft, build trust between worker center stakeholders, and address communication challenges between day laborers and employers, in the context of temporary work. Based on the application of the extended framework to this case study of worker center day laborers, we discuss how next steps in the research framework should prioritize understanding how and why employers make decisions to participate in wage theft and the potential for restorative justice and equity matching as a relationship model for employers and laborers in a well-being economy. 
    more » « less
  3. null (Ed.)
    Conveying complex objectives to reinforcement learning (RL) agents can often be difficult, involving meticulous design of reward functions that are sufficiently informative yet easy enough to provide. Human-in-the-loop RL methods allow practitioners to instead interactively teach agents through tailored feedback; however, such approaches have been challenging to scale since human feedback is very expensive. In this work, we aim to make this process more sample- and feedback-efficient. We present an off-policy, interactive RL algorithm that capitalizes on the strengths of both feedback and off-policy learning. Specifically, we learn a reward model by actively querying a teacher’s preferences between two clips of behavior and use it to train an agent. To enable off-policy learning, we relabel all the agent’s past experience when its reward model changes. We additionally show that pre-training our agents with unsupervised exploration substantially increases the mileage of its queries. We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods, including a variety of locomotion and robotic manipulation skills. We also show that our method is able to utilize real-time human feedback to effectively prevent reward exploitation and learn new behaviors that are difficult to specify with standard reward functions. 
    more » « less
  4. null (Ed.)
    Conveying complex objectives to reinforcement learning (RL) agents can often be difficult, involving meticulous design of reward functions that are sufficiently informative yet easy enough to provide. Human-in-the-loop RL methods allow practitioners to instead interactively teach agents through tailored feedback; however, such approaches have been challenging to scale since human feedback is very expensive. In this work, we aim to make this process more sample- and feedback-efficient. We present an off-policy, interactive RL algorithm that capitalizes on the strengths of both feedback and off-policy learning. Specifically, we learn a reward model by actively querying a teacher’s preferences between two clips of behavior and use it to train an agent. To enable off-policy learning, we relabel all the agent’s past experience when its reward model changes. We additionally show that pre-training our agents with unsupervised exploration substantially increases the mileage of its queries. We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods, including a variety of locomotion and robotic manipulation skills. We also show that our method is able to utilize real-time human feedback to effectively prevent reward exploitation and learn new behaviors that are difficult to specify with standard reward functions. 
    more » « less
  5. The overall goal of our research is to develop a system of intelligent multimodal affective pedagogical agents that are effective for different types of learners (Adamo et al., 2021). While most of the research on pedagogical agents tends to focus on the cognitive aspects of online learning and instruction, this project explores the less-studied role of affective (or emotional) factors. We aim to design believable animated agents that can convey realistic, natural emotions through speech, facial expressions, and body gestures and that can react to the students’ detected emotional states with emotional intelligence. Within the context of this goal, the specific objective of the work reported in the paper was to examine the extent to which the agents’ facial micro-expressions affect students’ perception of the agents’ emotions and their naturalness. Micro-expressions are very brief facial expressions that occur when a person either deliberately or unconsciously conceals an emotion being felt (Ekman &Friesen, 1969). Our assumption is that if the animated agents display facial micro expressions in addition to macro expressions, they will convey higher expressive richness and naturalness to the viewer, as “the agents can possess two emotional streams, one based on interaction with the viewer and the other based on their own internal state, or situation” (Queiroz et al. 2014, p.2).The work reported in the paper involved two studies with human subjects. The objectives of the first study were to examine whether people can recognize micro-expressions (in isolation) in animated agents, and whether there are differences in recognition based on the agent’s visual style (e.g., stylized versus realistic). The objectives of the second study were to investigate whether people can recognize the animated agents’ micro-expressions when integrated with macro-expressions, the extent to which the presence of micro + macro-expressions affect the perceived expressivity and naturalness of the animated agents, the extent to which exaggerating the micro expressions, e.g. increasing the amplitude of the animated facial displacements affects emotion recognition and perceived agent naturalness and emotional expressivity, and whether there are differences based on the agent’s design characteristics. In the first study, 15 participants watched eight micro-expression animations representing four different emotions (happy, sad, fear, surprised). Four animations featured a stylized agent and four a realistic agent. For each animation, subjects were asked to identify the agent’s emotion conveyed by the micro-expression. In the second study, 234 participants watched three sets of eight animation clips (24 clips in total, 12 clips per agent). Four animations for each agent featured the character performing macro-expressions only, four animations for each agent featured the character performing macro- + micro-expressions without exaggeration, and four animations for each agent featured the agent performing macro + micro-expressions with exaggeration. Participants were asked to recognize the true emotion of the agent and rate the emotional expressivity ad naturalness of the agent in each clip using a 5-point Likert scale. We have collected all the data and completed the statistical analysis. Findings and discussion, implications for research and practice, and suggestions for future work will be reported in the full paper. ReferencesAdamo N., Benes, B., Mayer, R., Lei, X., Meyer, Z., &Lawson, A. (2021). Multimodal Affective Pedagogical Agents for Different Types of Learners. In: Russo D., Ahram T., Karwowski W., Di Bucchianico G., Taiar R. (eds) Intelligent Human Systems Integration 2021. IHSI 2021. Advances in Intelligent Systems and Computing, 1322. Springer, Cham. https://doi.org/10.1007/978-3-030-68017-6_33Ekman, P., &Friesen, W. V. (1969, February). Nonverbal leakage and clues to deception. Psychiatry, 32(1), 88–106. https://doi.org/10.1080/00332747.1969.11023575 Queiroz, R. B., Musse, S. R., &Badler, N. I. (2014). Investigating Macroexpressions and Microexpressions in Computer Graphics Animated Faces. Presence, 23(2), 191-208. http://dx.doi.org/10.1162/

     
    more » « less