Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The question of global existence versus finite-time singularity formation is considered for the generalized Constantin–Lax–Majda equation with dissipation , where , both for the problem on the circle and the real line. In the periodic geometry, two complementary approaches are used to prove global-in-time existence of solutions for and all real values of an advection parameterawhen the data is small. We also derive new analytical solutions in both geometries whena = 0, and on the real line when , for various values ofσ. These solutions exhibit self-similar finite-time singularity formation, and the similarity exponents and conditions for singularity formation are fully characterized. We revisit an analytical solution on the real line due to Schochet fora = 0 andσ = 2, and reinterpret it terms of self-similar finite-time collapse. The analytical solutions on the real line allow finite-time singularity formation for arbitrarily small data, even for values ofσthat are greater than or equal to one, thereby illustrating a critical difference between the problems on the real line and the circle. The analysis is complemented by accurate numerical simulations, which are able to track the formation and motion of singularities in the complex plane. The computations validate and build upon the analytical theory.more » « less
-
Abstract We present two accurate and efficient algorithms for solving the incompressible, irrotational Euler equations with a free surface in two dimensions with background flow over a periodic, multiply connected fluid domain that includes stationary obstacles and variable bottom topography. One approach is formulated in terms of the surface velocity potential while the other evolves the vortex sheet strength. Both methods employ layer potentials in the form of periodized Cauchy integrals to compute the normal velocity of the free surface, are compatible with arbitrary parameterizations of the free surface and boundaries, and allow for circulation around each obstacle, which leads to multiple-valued velocity potentials but single-valued stream functions. We prove that the resulting second-kind Fredholm integral equations are invertible, possibly after a physically motivated finite-rank correction. In an angle-arclength setting, we show how to avoid curve reconstruction errors that are incompatible with spatial periodicity. We use the proposed methods to study gravity-capillary waves generated by flow around several elliptical obstacles above a flat or variable bottom boundary. In each case, the free surface eventually self-intersects in a splash singularity or collides with a boundary. We also show how to evaluate the velocity and pressure with spectral accuracy throughout the fluid, including near the free surface and solid boundaries. To assess the accuracy of the time evolution, we monitor energy conservation and the decay of Fourier modes and compare the numerical results of the two methods to each other. We implement several solvers for the discretized linear systems and compare their performance. The fastest approach employs a graphics processing unit (GPU) to construct the matrices and carry out iterations of the generalized minimal residual method (GMRES).more » « less
-
Lei and Lin [Comm. Pure Appl. Math. 64 (2011), pp. 1297–1304] have recently given a proof of a global mild solution of the three-dimensional Navier-Stokes equations in function spaces based on the Wiener algebra. An alternative proof of existence of these solutions was then developed by Bae [Proc. Amer. Math. Soc. 143 (2015), pp. 2887–2892], and this new proof allowed for an estimate of the radius of analyticity of the solutions at positive times. We adapt the Bae proof to prove existence of the Lei-Lin solution in the spatially periodic setting, finding an improved bound for the radius of analyticity in this case.more » « less
-
In this paper we construct short time classical solutions to a class of master equations in the presence of non-degenerate individual noise arising in the theory of mean field games. The considered Hamiltonians are non-separable andlocalfunctions of the measure variable, therefore the equation is restricted to absolutely continuous measures whose densities lie in suitable Sobolev spaces. Our results hold for smooth enough Hamiltonians, without any additional structural conditions as convexity or monotonicity.more » « less