Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We consider the three-dimensional Euler equations in a domain with a free boundary with no surface tension. We assume that is such that in an arbitrarily small neighborhood of the free boundary, and we use the Lagrangian approach to derive an a priori estimate that can be used to prove local-in-time existence and uniqueness of solutions under the Rayleigh–Taylor stability condition.more » « less
- 
            For data which are analytic only close to the boundary of the domain, we prove that in the inviscid limit the Navier-Stokes solution converges to the corresponding Euler solution. Compared to earlier results, in this paper we only require boundedness of an integrable analytic norm of the initial data, with respect to the normal variable, thus removing the uniform in viscosity boundedness assumption on the vorticity. As a consequence, we may allow the initial vorticity to be unbounded close to the set $y=0$, which we take as the boundary of the domain; in particular the vorticity can grow with the rate $$1/y^{1-\delta}$$ for $$y$$ close to $$0$$, for any $$\delta>0$$.more » « less
- 
            We consider the stochastic Navier–Stokes equations in T^3 with multiplicative white noise. We construct a unique local strong solution with initial data in L^p, where p > 5. We also address the global existence of the solution when the initial data is small in L^p, with the same range of p.more » « less
- 
            We address the global existence and uniqueness of solutions for the anisotropically reduced 2D Kuramoto-Sivashinsky equations in a periodic domain with initial data \begin{document}$$ u_{01} \in L^2 $$\end{document} and \begin{document}$$ u_{02} \in H^{-1 + \eta} $$\end{document} for \begin{document}$$ \eta > 0 $$\end{document}.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available