skip to main content


Search for: All records

Award ID contains: 1908195

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider a [Formula: see text] system of hyperbolic balance laws that is the converted form under inverse Hopf–Cole transformation of a Keller–Segel type chemotaxis model. We study Cauchy problem when Cauchy data connect two different end-states as [Formula: see text]. The background wave is a diffusive contact wave of the reduced system. We establish global existence of solution and study the time asymptotic behavior. In the special case where the cellular population initially approaches its stable equilibrium value as [Formula: see text], we obtain nonlinear stability of the diffusive contact wave under smallness assumption. In the general case where the population initially does not approach to its stable equilibrium value at least at one of the far fields, we use a correction function in the time asymptotic ansatz, and show that the population approaches logistically to its stable equilibrium value. Our result shows two significant differences when comparing to Euler equations with damping. The first one is the existence of a secondary wave in the time asymptotic ansatz. This implies that our solutions converge to the diffusive contact wave slower than those of Euler equations with damping. The second one is that the correction function logistically grows rather than exponentially decays. 
    more » « less
  2. D. M. Kilgour et al. (Ed.)
    We consider a Keller-Segel type chemotaxis model with logarithmic sensitivity and density-dependent production/consumption rate. It is a 2 × 2 reaction-diffusion system describing the interaction of cells and a chemical signal. We study Cauchy problem for the original system and its transformed system, which is one of hyperbolic-parabolic conservation laws. In both cases of diffusive and non-diffusive chemical,we obtain optimal L^2 time decay rates for the solution. Our results improve those in Li et al. (Nonlinearity 28:2181-2210, 2015 [5]), Martinez et al. (Indiana Univ Math J 67:1383-1424, 2018 [7]). 
    more » « less
  3. We study the time asymptotic decay of solutions for a general system of hyperbolic–parabolic balance laws in one space dimension. The system has a physical viscosity matrix and a lower-order term for relaxation, damping or chemical reaction. The viscosity matrix and the Jacobian matrix of the lower-order term are rank deficient. For Cauchy problem around a constant equilibrium state, existence of solution global in time has been established recently under a set of reasonable assumptions. In this paper, we obtain optimal [Formula: see text] decay rates for [Formula: see text]. Our result is general and applies to models such as Keller–Segel equations with logarithmic chemotactic sensitivity and logistic growth, and gas flows with translational and vibrational non-equilibrium. Our result also recovers or improves the existing results in literature on the special cases of hyperbolic–parabolic conservation laws and hyperbolic balance laws, respectively. 
    more » « less