- Award ID(s):
- 1908195
- PAR ID:
- 10447117
- Date Published:
- Journal Name:
- Journal of Hyperbolic Differential Equations
- Volume:
- 20
- Issue:
- 01
- ISSN:
- 0219-8916
- Page Range / eLocation ID:
- 219 to 257
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We study the time asymptotic decay of solutions for a general system of hyperbolic–parabolic balance laws in one space dimension. The system has a physical viscosity matrix and a lower-order term for relaxation, damping or chemical reaction. The viscosity matrix and the Jacobian matrix of the lower-order term are rank deficient. For Cauchy problem around a constant equilibrium state, existence of solution global in time has been established recently under a set of reasonable assumptions. In this paper, we obtain optimal [Formula: see text] decay rates for [Formula: see text]. Our result is general and applies to models such as Keller–Segel equations with logarithmic chemotactic sensitivity and logistic growth, and gas flows with translational and vibrational non-equilibrium. Our result also recovers or improves the existing results in literature on the special cases of hyperbolic–parabolic conservation laws and hyperbolic balance laws, respectively.more » « less
-
We investigate the phase diagram of the complex cubic unitary ensemble of random matrices with the potential [Formula: see text], where t is a complex parameter. As proven in our previous paper [Bleher et al., J. Stat. Phys. 166, 784–827 (2017)], the whole phase space of the model, [Formula: see text], is partitioned into two phase regions, [Formula: see text] and [Formula: see text], such that in [Formula: see text] the equilibrium measure is supported by one Jordan arc (cut) and in [Formula: see text] by two cuts. The regions [Formula: see text] and [Formula: see text] are separated by critical curves, which can be calculated in terms of critical trajectories of an auxiliary quadratic differential. In Bleher et al. [J. Stat. Phys. 166, 784–827 (2017)], the one-cut phase region was investigated in detail. In the present paper, we investigate the two-cut region. We prove that in the two-cut region, the endpoints of the cuts are analytic functions of the real and imaginary parts of the parameter t, but not of the parameter t itself (so that the Cauchy–Riemann equations are violated for the endpoints). We also obtain the semiclassical asymptotics of the orthogonal polynomials associated with the ensemble of random matrices and their recurrence coefficients. The proofs are based on the Riemann–Hilbert approach to semiclassical asymptotics of the orthogonal polynomials and the theory of S-curves and quadratic differentials.
-
null (Ed.)We propose an Euler transformation that transforms a given [Formula: see text]-dimensional cell complex [Formula: see text] for [Formula: see text] into a new [Formula: see text]-complex [Formula: see text] in which every vertex is part of the same even number of edges. Hence every vertex in the graph [Formula: see text] that is the [Formula: see text]-skeleton of [Formula: see text] has an even degree, which makes [Formula: see text] Eulerian, i.e., it is guaranteed to contain an Eulerian tour. Meshes whose edges admit Eulerian tours are crucial in coverage problems arising in several applications including 3D printing and robotics. For [Formula: see text]-complexes in [Formula: see text] ([Formula: see text]) under mild assumptions (that no two adjacent edges of a [Formula: see text]-cell in [Formula: see text] are boundary edges), we show that the Euler transformed [Formula: see text]-complex [Formula: see text] has a geometric realization in [Formula: see text], and that each vertex in its [Formula: see text]-skeleton has degree [Formula: see text]. We bound the numbers of vertices, edges, and [Formula: see text]-cells in [Formula: see text] as small scalar multiples of the corresponding numbers in [Formula: see text]. We prove corresponding results for [Formula: see text]-complexes in [Formula: see text] under an additional assumption that the degree of a vertex in each [Formula: see text]-cell containing it is [Formula: see text]. In this setting, every vertex in [Formula: see text] is shown to have a degree of [Formula: see text]. We also present bounds on parameters measuring geometric quality (aspect ratios, minimum edge length, and maximum angle of cells) of [Formula: see text] in terms of the corresponding parameters of [Formula: see text] for [Formula: see text]. Finally, we illustrate a direct application of the proposed Euler transformation in additive manufacturing.more » « less
-
null (Ed.)Let [Formula: see text] be a convex function satisfying [Formula: see text], [Formula: see text] for [Formula: see text], and [Formula: see text]. Consider the unique entropy admissible (i.e. Kružkov) solution [Formula: see text] of the scalar, 1-d Cauchy problem [Formula: see text], [Formula: see text]. For compactly supported data [Formula: see text] with bounded [Formula: see text]-variation, we realize the solution [Formula: see text] as a limit of front-tracking approximations and show that the [Formula: see text]-variation of (the right continuous version of) [Formula: see text] is non-increasing in time. We also establish the natural time-continuity estimate [Formula: see text] for [Formula: see text], where [Formula: see text] depends on [Formula: see text]. Finally, according to a theorem of Goffman–Moran–Waterman, any regulated function of compact support has bounded [Formula: see text]-variation for some [Formula: see text]. As a corollary we thus have: if [Formula: see text] is a regulated function, so is [Formula: see text] for all [Formula: see text].more » « less
-
Abstract In this paper, we study the Cauchy problem of the compressible Euler system with strongly singular velocity alignment. We prove the existence and uniqueness of global solutions in critical Besov spaces to the considered system with small initial data. The local-in-time solvability is also addressed. Moreover, we show the large-time asymptotic behaviour and optimal decay estimates of the solutions as
.