skip to main content

Search for: All records

Award ID contains: 1908299

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 17, 2024
  2. Free, publicly-accessible full text available May 1, 2024
  3. Wang, L. ; Dou, Q. ; Fletcher, P.T. ; Speidel, S. ; Li, S. (Ed.)
    Model calibration measures the agreement between the predicted probability estimates and the true correctness likelihood. Proper model calibration is vital for high-risk applications. Unfortunately, modern deep neural networks are poorly calibrated, compromising trustworthiness and reliability. Medical image segmentation particularly suffers from this due to the natural uncertainty of tissue boundaries. This is exasperated by their loss functions, which favor overconfidence in the majority classes. We address these challenges with DOMINO, a domain-aware model calibration method that leverages the semantic confusability and hierarchical similarity between class labels. Our experiments demonstrate that our DOMINO-calibrated deep neural networks outperform non-calibrated models and state-of-the-art morphometric methods in head image segmentation. Our results show that our method can consistently achieve better calibration, higher accuracy, and faster inference times than these methods, especially on rarer classes. This performance is attributed to our domain-aware regularization to inform semantic model calibration. These findings show the importance of semantic ties between class labels in building confidence in deep learning models. The framework has the potential to improve the trustworthiness and reliability of generic medical image segmentation models. The code for this article is available at: 
    more » « less
  4. Abstract Background Diabetic retinopathy (DR) is a leading cause of blindness in American adults. If detected, DR can be treated to prevent further damage causing blindness. There is an increasing interest in developing artificial intelligence (AI) technologies to help detect DR using electronic health records. The lesion-related information documented in fundus image reports is a valuable resource that could help diagnoses of DR in clinical decision support systems. However, most studies for AI-based DR diagnoses are mainly based on medical images; there is limited studies to explore the lesion-related information captured in the free text image reports. Methods In this study, we examined two state-of-the-art transformer-based natural language processing (NLP) models, including BERT and RoBERTa, compared them with a recurrent neural network implemented using Long short-term memory (LSTM) to extract DR-related concepts from clinical narratives. We identified four different categories of DR-related clinical concepts including lesions, eye parts, laterality, and severity, developed annotation guidelines, annotated a DR-corpus of 536 image reports, and developed transformer-based NLP models for clinical concept extraction and relation extraction. We also examined the relation extraction under two settings including ‘gold-standard’ setting—where gold-standard concepts were used–and end-to-end setting. Results For concept extraction, the BERT model pretrained with the MIMIC III dataset achieve the best performance (0.9503 and 0.9645 for strict/lenient evaluation). For relation extraction, BERT model pretrained using general English text achieved the best strict/lenient F1-score of 0.9316. The end-to-end system, BERT_general_e2e, achieved the best strict/lenient F1-score of 0.8578 and 0.8881, respectively. Another end-to-end system based on the RoBERTa architecture, RoBERTa_general_e2e, also achieved the same performance as BERT_general_e2e in strict scores. Conclusions This study demonstrated the efficiency of transformer-based NLP models for clinical concept extraction and relation extraction. Our results show that it’s necessary to pretrain transformer models using clinical text to optimize the performance for clinical concept extraction. Whereas, for relation extraction, transformers pretrained using general English text perform better. 
    more » « less
  5. A body of studies has proposed to obtain high-quality images from low-dose and noisy Computed Tomography (CT) scans for radiation reduction. However, these studies are designed for population-level data without considering the variation in CT devices and individuals, limiting the current approaches' performance, especially for ultra-low-dose CT imaging. Here, we proposed PIMA-CT, a physical anthropomorphic phantom model integrating an unsupervised learning framework, using a novel deep learning technique called Cyclic Simulation and Denoising (CSD), to address these limitations. We first acquired paired low-dose and standard-dose CT scans of the phantom and then developed two generative neural networks: noise simulator and denoiser. The simulator extracts real low-dose noise and tissue features from two separate image spaces (e.g., low-dose phantom model scans and standard-dose patient scans) into a unified feature space. Meanwhile, the denoiser provides feedback to the simulator on the quality of the generated noise. In this way, the simulator and denoiser cyclically interact to optimize network learning and ease the denoiser to simultaneously remove noise and restore tissue features. We thoroughly evaluate our method for removing both real low-dose noise and Gaussian simulated low-dose noise. The results show that CSD outperforms one of the state-of-the-art denoising algorithms without using any labeled data (actual patients' low-dose CT scans) nor simulated low-dose CT scans. This study may shed light on incorporating physical models in medical imaging, especially for ultra-low level dose CT scans restoration. 
    more » « less
  6. Background and Objectives: Prediction of decline to dementia using objective biomarkers in high-risk patients with amnestic mild cognitive impairment (aMCI) has immense utility. Our objective was to use multimodal MRI to (1) determine whether accurate and precise prediction of dementia conversion could be achieved using baseline data alone, and (2) generate a map of the brain regions implicated in longitudinal decline to dementia. Methods: Participants meeting criteria for aMCI at baseline ( N = 55) were classified at follow-up as remaining stable/improved in their diagnosis ( N = 41) or declined to dementia ( N = 14). Baseline T1 structural MRI and resting-state fMRI (rsfMRI) were combined and a semi-supervised support vector machine (SVM) which separated stable participants from those who decline at follow-up with maximal margin. Cross-validated model performance metrics and MRI feature weights were calculated to include the strength of each brain voxel in its ability to distinguish the two groups. Results: Total model accuracy for predicting diagnostic change at follow-up was 92.7% using baseline T1 imaging alone, 83.5% using rsfMRI alone, and 94.5% when combining T1 and rsfMRI modalities. Feature weights that survived the p < 0.01 threshold for separation of the two groups revealed the strongest margin in the combined structural and functional regions underlying the medial temporal lobes in the limbic system. Discussion: An MRI-driven SVM model demonstrates accurate and precise prediction of later dementia conversion in aMCI patients. The multi-modal regions driving this prediction were the strongest in the medial temporal regions of the limbic system, consistent with literature on the progression of Alzheimer’s disease. 
    more » « less
  7. null (Ed.)
    Abstract Alzheimer's disease is the leading cause of dementia. The long progression period in Alzheimer's disease provides a possibility for patients to get early treatment by having routine screenings. However, current clinical diagnostic imaging tools do not meet the specific requirements for screening procedures due to high cost and limited availability. In this work, we took the initiative to evaluate the retina, especially the retinal vasculature, as an alternative for conducting screenings for dementia patients caused by Alzheimer's disease. Highly modular machine learning techniques were employed throughout the whole pipeline. Utilizing data from the UK Biobank, the pipeline achieved an average classification accuracy of 82.44%. Besides the high classification accuracy, we also added a saliency analysis to strengthen this pipeline's interpretability. The saliency analysis indicated that within retinal images, small vessels carry more information for diagnosing Alzheimer's diseases, which aligns with related studies. 
    more » « less