skip to main content

Search for: All records

Award ID contains: 1908313

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gonnord, Laure ; Titolo, Laura (Ed.)
    Just-in-Time (JIT) compilers are widely used to improve the performance of interpreter-based language implementations by creating optimized code at runtime. However, bugs in the JIT compiler’s code manipulation and optimization can result in the generation of incorrect code. Such bugs can be difficult to diagnose and fix, and can result in exploitable vulnerabilities. Unfortunately, existing approaches to automatic bug localization do not carry over well to such bugs. This paper discusses a different approach to analyzing JIT compiler optimization behaviors, based on using dynamic analysis to construct abstract models of the JIT compiler’s optimizer and back end. By comparing the models obtained for buggy and non-buggy executions of the JIT compiler, we can pinpoint the components of the JIT compiler’s internal representation that have been affected by the bug; this can then be mapped back to identify the buggy code. Our ex- periments with two real bugs for Google V8 JIT compiler, TurboFan, show the utility and practicality of our approach.
  2. Kwon, Yonghwi ; Banescu, Sebastian (Ed.)
    This paper proposes a framework for automatic exploit generation in JIT compilers, focusing in particular on heap corruption vulnerabilities triggered by dynamic code, ie, code generated at runtime by the JIT compiler. The purpose is to help assess the severity of vulnerabilities and thereby assist with vulnerability triage. The framework consists of two components: the first extracts high-level representations of exploitation primitives from existing exploits, and the second uses the primitives so extracted to construct exploits for new bugs. We are currently building a prototype implementation of the framework focusing on JavaScript JIT compilers. To the best of our knowledge, this is the first proposal to consider automatic exploit generation for code generated dynamically by JIT compilers.
  3. Kwon, Yonghwi ; Banescu, Sebastian (Ed.)
    Recent work suggests that it may be possible to determine the author of a binary program simply by analyzing stylistic features preserved within it. As this poses a threat to the privacy of programmers who wish to distribute their work anonymously, we consider steps that can be taken to mislead such analysis. We begin by exploring the effect of compiler optimizations on the features used for stylistic analysis. Building on these findings, we propose a gray-box attack on a state-of-the-art classifier using compiler optimizations. Finally, we discuss our results, as well as implications for the field of binary stylometry.
  4. Just-in-time (JIT) compilers are used by many modern programming systems in order to improve performance. Bugs in JIT compilers provide exploitable security vulnerabilities and debugging them is difficult as they are large, complex, and dynamic. Current debugging and visualization tools deal with static code and are not suitable in this domain. We describe a new approach for simplifying the large and complex intermediate representation, generated by a JIT compiler and visualize it with a metro map metaphor to aid developers in debugging.
  5. Many widely-deployed modern programming systems use just-in-time (JIT) compilers to improve performance. The size and complexity of JIT-based systems, combined with the dynamic nature of JIT-compiler optimizations, make it challenging to locate and fix JIT compiler bugs quickly. At the same time, JIT compiler bugs can result in exploitable security vulnerabilities, making rapid bug localization important. Existing work on automated bug localization focuses on static code, i.e., code that is not generated at runtime, and so cannot handle bugs in JIT compilers that generate incorrect code during optimization. This paper describes an approach to automated bug localization in JIT compilers, down to the level of distinct optimization phases, starting with a single initial Proof-of-Concept (PoC) input that demonstrates the bug. Experiments using a prototype implementation of our ideas on Google’s V8 JavaScript interpreter and TurboFan JIT compiler demonstrates that it can successfully identify buggy optimization phases.
  6. Dynamic code, i.e., code that is created or modified at runtime, is ubiquitous in today’s world. The behavior of dynamic code can depend on the logic of the dynamic code generator in subtle and non-obvious ways, e.g., JIT compiler bugs can lead to exploitable vulnerabilities in the resulting JIT-compiled code. Existing approaches to program analysis do not provide adequate support for reasoning about such behavioral relationships. This paper takes a first step in addressing this problem by describing a program representation and a new notion of dependency that allows us to reason about dependency and information flow relationships between the dynamic code generator and the generated dynamic code. Experimental results show that analyses based on these concepts are able to capture properties of dynamic code that cannot be identified using traditional program analyses.