Defect prediction aims to automatically identify potential defective code with minimal human intervention and has been widely studied in the literature. Just-in-Time (JIT) defect prediction focuses on program changes rather than whole programs, and has been widely adopted in continuous testing. CC2Vec, state-of-the-art JIT defect prediction tool, first constructs a hierarchical attention network (HAN) to learn distributed vector representations of both code additions and deletions, and then concatenates them with two other embedding vectors representing commit messages and overall code changes extracted by the existing DeepJIT approach to train a model for predicting whether a given commit is defective. Although CC2Vec has been shown to be the state of the art for JIT defect prediction, it was only evaluated on a limited dataset and not compared with all representative baselines. Therefore, to further investigate the efficacy and limitations of CC2Vec, this paper performs an extensive study of CC2Vec on a large-scale dataset with over 310,370 changes (8.3 X larger than the original CC2Vec dataset). More specifically, we also empirically compare CC2Vec against DeepJIT and representative traditional JIT defect prediction techniques. The experimental results show that CC2Vec cannot consistently outperform DeepJIT, and neither of them can consistently outperform traditional JIT defect prediction. We also investigate the impact of individual traditional defect prediction features and find that the added-line-number feature outperforms other traditional features. Inspired by this finding, we construct a simplistic JIT defect prediction approach which simply adopts the added-line- number feature with the logistic regression classifier. Surprisingly, such a simplistic approach can outperform CC2Vec and DeepJIT in defect prediction, and can be 81k X/120k X faster in training/testing. Furthermore, the paper also provides various practical guidelines for advancing JIT defect prediction in the near future.
more »
« less
Representing and reasoning about dynamic code
Dynamic code, i.e., code that is created or modified at runtime, is ubiquitous in today’s world. The behavior of dynamic code can depend on the logic of the dynamic code generator in subtle and non-obvious ways, e.g., JIT compiler bugs can lead to exploitable vulnerabilities in the resulting JIT-compiled code. Existing approaches to program analysis do not provide adequate support for reasoning about such behavioral relationships. This paper takes a first step in addressing this problem by describing a program representation and a new notion of dependency that allows us to reason about dependency and information flow relationships between the dynamic code generator and the generated dynamic code. Experimental results show that analyses based on these concepts are able to capture properties of dynamic code that cannot be identified using traditional program analyses.
more »
« less
- Award ID(s):
- 1908313
- NSF-PAR ID:
- 10287823
- Date Published:
- Journal Name:
- ASE '20: Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering
- Page Range / eLocation ID:
- 312 - 323
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Just-in-Time (JIT) compilers are ubiquitous in modern computing systems and are used in a wide variety of software. Dynamic code generation bugs, where the JIT compiler silently emits incorrect code, can result in exploitable vulnerabilities. They, therefore, pose serious security concerns and make quick mitigation essential. However, due to the size and complexity of JIT compilers, quickly locating and fixing bugs is often challenging. In addition, the unique characteristics of JIT compilers make existing bug localization approaches inapplicable. Therefore, this paper proposes a new approach to automatic bug localization, explicitly targeting the JIT compiler back-end. The approach is based on explicitly modeling architecture-independent back-end representation and architecture-specific code-generation. Experiments using a prototype implementation on a widely used JIT compiler (Turbofan) indicate that it can successfully localize dynamic code generation bugs in the back-end with high accuracy.more » « less
-
null (Ed.)Timing side channels arise in software when a program's execution time can be correlated with security-sensitive program input. Recent results on software side-channel detection focus on analysis of program's source code. However, runtime behavior, in particular optimizations introduced during just-in-time (JIT) compilation, can impact or even introduce timing side channels in programs. In this paper, we present a technique for automatically detecting such JIT-induced timing side channels in Java programs. We first introduce patterns to detect partitions of secret input potentially separable by side channels. Then we present an automated approach for exploring behaviors of the Java Virtual Machine (JVM) to identify states where timing channels separating these partitions arise. We evaluate our technique on three datasets used in recent work on side-channel detection. We find that many code variants labeled "safe" with respect to side-channel vulnerabilities are in fact vulnerable to JIT-induced timing side channels. Our results directly contradict the conclusions of four separate state-of-the-art program analysis tools for side-channel detection and demonstrate that JIT-induced side channels are prevalent and can be detected automatically.more » « less
-
Gonnord, Laure ; Titolo, Laura (Ed.)Just-in-Time (JIT) compilers are widely used to improve the performance of interpreter-based language implementations by creating optimized code at runtime. However, bugs in the JIT compiler’s code manipulation and optimization can result in the generation of incorrect code. Such bugs can be difficult to diagnose and fix, and can result in exploitable vulnerabilities. Unfortunately, existing approaches to automatic bug localization do not carry over well to such bugs. This paper discusses a different approach to analyzing JIT compiler optimization behaviors, based on using dynamic analysis to construct abstract models of the JIT compiler’s optimizer and back end. By comparing the models obtained for buggy and non-buggy executions of the JIT compiler, we can pinpoint the components of the JIT compiler’s internal representation that have been affected by the bug; this can then be mapped back to identify the buggy code. Our ex- periments with two real bugs for Google V8 JIT compiler, TurboFan, show the utility and practicality of our approach.more » « less
-
null (Ed.)Many widely-deployed modern programming systems use just-in-time (JIT) compilers to improve performance. The size and complexity of JIT-based systems, combined with the dynamic nature of JIT-compiler optimizations, make it challenging to locate and fix JIT compiler bugs quickly. At the same time, JIT compiler bugs can result in exploitable security vulnerabilities, making rapid bug localization important. Existing work on automated bug localization focuses on static code, i.e., code that is not generated at runtime, and so cannot handle bugs in JIT compilers that generate incorrect code during optimization. This paper describes an approach to automated bug localization in JIT compilers, down to the level of distinct optimization phases, starting with a single initial Proof-of-Concept (PoC) input that demonstrates the bug. Experiments using a prototype implementation of our ideas on Google’s V8 JavaScript interpreter and TurboFan JIT compiler demonstrates that it can successfully identify buggy optimization phases.more » « less