skip to main content


Search for: All records

Award ID contains: 1908504

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 30, 2025
  2. Scheduling transformations reorder operations in a program to improve locality and/or parallelism. There are mature loop transformation frameworks such as the polyhedral model for composing and applying instance-wise scheduling transformations for loop nests.In recent years, there have been efforts to build frameworks for composing and applying scheduling transformations for nested recursion and loops, but these frameworks cannot employ the full power of transformations for loop nests since they have overly-restrictive representations. This paper describes a new framework, UniRec, that not only generalizes prior frameworks for reasoning about transformations on recursion, but also generalizes the unimodular framework, and hence unifies reasoning about perfectly-nested loops and recursion. 
    more » « less
  3. The last decade has sparked several valiant efforts in deductive verification of distributed agreement protocols such as consensus and leader election. Oddly, there have been far fewer verification efforts that go beyond the core protocols and target applications that are built on top of agreement protocols. This is unfortunate, as agreement-based distributed services such as data stores, locks, and ledgers are ubiquitous and potentially permit modular, scalable verification approaches that mimic their modular design. We address this need for verification of distributed agreement-based systems through our novel modeling and verification framework, QuickSilver, that is not only modular, but also fully automated. The key enabling feature of QuickSilver is our encoding of abstractions of verified agreement protocols that facilitates modular, decidable, and scalable automated verification. We demonstrate the potential of QuickSilver by modeling and efficiently verifying a series of tricky case studies, adapted from real-world applications, such as a data store, a lock service, a surveillance system, a pathfinding algorithm for mobile robots, and more. 
    more » « less