skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: RT-DBSCAN: Accelerating DBSCAN using Ray Tracing Hardware
Award ID(s):
2216978 1919197 1908504
PAR ID:
10467236
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-3766-2
Page Range / eLocation ID:
963 to 973
Format(s):
Medium: X
Location:
St. Petersburg, FL, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Clustering is a fundamental task in machine learning. One of the most successful and broadly used algorithms is DBSCAN, a density-based clustering algorithm. DBSCAN requires ϵ-nearest neighbor graphs of the input dataset, which are computed with range-search algorithms and spatial data structures like KD-trees. Despite many efforts to design scalable implementations for DBSCAN, existing work is limited to low-dimensional datasets, as constructing ϵ-nearest neighbor graphs can be expensive in high-dimensions. This article introduces a modified DBSCAN, usingk-nearest neighbor (kNN) graphs to improve efficiency. We outline conditions forkNN-DBSCAN to match DBSCAN’s results and present a parallel implementation using OpenMP and MPI for shared and distributed memory systems. Testing on datasets up to 32 dimensions, we achieve remarkable scalability. Our implementation clusters one billion 3D points in under one second on 28K cores at TACC’s Frontera system. In a larger run, we cluster 65 billion points in 20 dimensions in under 40 seconds using 114,688 cores. Our method is up to 37× faster than state-of-the-art parallel DBSCAN on a 20-dimensional dataset with 4 million points. Code is available athttps://github.com/ut-padas/knndbscan. 
    more » « less
  2. null (Ed.)
  3. Given a collection of geo-distributed points, we aim to detect statistically significant clusters of varying shapes and densities. Spatial clustering has been widely used many important societal applications, including public health and safety, transportation, environment, etc. The problem is challenging because many application domains have low-tolerance to false positives (e.g., falsely claiming a crime cluster in a community can have serious negative impacts on the residents) and clusters often have irregular shapes. In related work, the spatial scan statistic is a popular technique that can detect significant clusters but it requires clusters to have certain predefined shapes (e.g., circles, rings). In contrast, density-based methods (e.g., DBSCAN) can find clusters of arbitrary shape efficiently but do not consider statistical significance, making them susceptible to spurious patterns. To address these limitations, we first propose a modeling of statistical significance in DBSCAN based clustering. Then, we propose a baseline Monte Carlo method to estimate the significance of clusters and a Dual-Convergence algorithm to accelerate the computation. Experiment results show that significant DBSCAN is very effective in removing chance patterns and the Dual-Convergence algorithm can greatly reduce execution time. 
    more » « less
  4. Cluster detection is important and widely used in a variety of applications, including public health, public safety, transportation, and so on. Given a collection of data points, we aim to detect density-connected spatial clusters with varying geometric shapes and densities, under the constraint that the clusters are statistically significant. The problem is challenging, because many societal applications and domain science studies have low tolerance for spurious results, and clusters may have arbitrary shapes and varying densities. As a classical topic in data mining and learning, a myriad of techniques have been developed to detect clusters with both varying shapes and densities (e.g., density-based, hierarchical, spectral, or deep clustering methods). However, the vast majority of these techniques do not consider statistical rigor and are susceptible to detecting spurious clusters formed as a result of natural randomness. On the other hand, scan statistic approaches explicitly control the rate of spurious results, but they typically assume a single “hotspot” of over-density and many rely on further assumptions such as a tessellated input space. To unite the strengths of both lines of work, we propose a statistically robust formulation of a multi-scale DBSCAN, namely Significant DBSCAN+, to identify significant clusters that are density connected. As we will show, incorporation of statistical rigor is a powerful mechanism that allows the new Significant DBSCAN+ to outperform state-of-the-art clustering techniques in various scenarios. We also propose computational enhancements to speed-up the proposed approach. Experiment results show that Significant DBSCAN+ can simultaneously improve the success rate of true cluster detection (e.g., 10–20% increases in absolute F1 scores) and substantially reduce the rate of spurious results (e.g., from thousands/hundreds of spurious detections to none or just a few across 100 datasets), and the acceleration methods can improve the efficiency for both clustered and non-clustered data. 
    more » « less